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UNIT I  - 2D PRIMITIVES 

 

Output primitives – Line, Circle and Ellipse drawing algorithms - Attributes of 

output primitives – Two dimensional Geometric transformation - Two dimensional 

viewing – Line, Polygon, Curve and Text clipping algorithms 

Introduction 

A picture is completely specified by the set of intensities for the pixel positions in the 

display. Shapes and colors of the objects can be described internally with pixel arrays 

into the frame buffer or with the set of the basic geometric – structure such as straight 

line segments and polygon color areas. To describe structure of basic object is referred to 

as output primitives. 

 

Each output primitive is specified with input co-ordinate data and other information about 

the way that objects is to be displayed. Additional output primitives that can be used to 

constant a picture include circles and other conic sections, quadric surfaces, Spline curves 

and surfaces, polygon floor areas and character string. 

 

Points and Lines 

 

Point plotting is accomplished by converting a single coordinate position furnished by 

an application program into appropriate operations for the output device. With a CRT 

monitor, for example, the electron beam is turned on to illuminate the screen phosphor at 

the selected location 

 

Line drawing is accomplished by calculating intermediate positions along the line path 

between two specified end points positions. An output device is then directed to fill in 

these positions between the end points 

 

Digital devices display a straight line segment by plotting discrete points between the two 

end points. Discrete coordinate positions along the line path are calculated from the 

equation of the line. For a raster video display, the line color (intensity) is then loaded 

into the frame buffer at the corresponding pixel coordinates. Reading from the frame 

buffer, the video controller then plots “the screen pixels”. 

 

Pixel positions are referenced according to scan-line number and column number (pixel 

position across a scan line). Scan lines are numbered consecutively from 0, starting at the 

bottom of the screen; and pixel columns are numbered from 0, left to right across each 

scan line 

 

  

 



 2 

 
Figure : Pixel Postions reference by scan line number and column number 

 

To load an intensity value into the frame buffer at a position corresponding to column x 

along scan line y, 

 

setpixel (x, y) 

 

To retrieve the current frame buffer intensity setting for a specified location we use a low 

level function 

 

getpixel (x, y) 

 

 

Line Drawing Algorithms 

 Digital Differential Analyzer (DDA)  Algorithm 

 Bresenham’s Line Algorithm 

 Parallel Line Algorithm 

 

The Cartesian slope-intercept equation for a straight line is 

 

      y = m . x + b      (1) 

 

Where m as slope of the line and b as the y intercept 
 

 

Given that the two endpoints of a line segment are specified at positions (x1,y1) and 

(x2,y2) as in figure we can determine the values for the slope m and y intercept b  with the 

following calculations 
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Figure : Line Path between endpoint positions (x1,y1) and (x2,y2) 

 

m = ∆y / ∆x = y2-y1 / x2 - x1    (2) 

 

b=  y1 - m . x1      (3) 

 

For any given x interval  ∆x along a line, we can compute the corresponding y interval           

∆ y 

∆y= m ∆x       (4) 

 

We can obtain the x interval ∆x corresponding to a specified  ∆y as  

 

∆ x = ∆ y/m       (5) 
 

For lines with slope magnitudes    |m| < 1,  ∆x can be set proportional to a small 

horizontal deflection voltage and the corresponding vertical deflection is then set 

proportional to   ∆y as calculated from Eq (4). 

 

For lines whose slopes have magnitudes   |m |  >1 , ∆y can be set proportional to a small 

vertical deflection voltage with the corresponding horizontal deflection voltage set 

proportional to  ∆x, calculated from Eq (5) 

 

 For lines with m = 1,    ∆x = ∆y and the horizontal and vertical deflections voltage 

are equal. 

 

 
Figure : Straight line Segment with five sampling positions along the x axis between x1 and x2 
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Digital Differential Analyzer (DDA) Algortihm 

 

The digital differential analyzer (DDA) is a scan-conversion line algorithm based on 

calculation either  ∆y or  ∆x 

 

The line at unit intervals in one coordinate and determine corresponding integer values 

nearest the line path for the other coordinate. 

 

A line with positive slop, if the slope is less than or equal to 1, at unit x intervals (∆x=1)  

and compute each successive y values as  

 

yk+1 = yk + m     (6) 

 

Subscript k takes integer values starting from 1 for the first point and increases by 1 until 

the final endpoint is reached. m can be any real number between 0 and 1 and, the 

calculated y values must be rounded to the nearest integer 

 

For lines with a positive slope greater than 1 we reverse the roles of x and y, (∆y=1)  and 

calculate each succeeding x value as 

 

   xk+1 = xk + (1/m)    (7) 

 

Equation (6) and (7) are based on the assumption that lines are to be processed from the 

left endpoint to the right endpoint. 

 

If this processing is reversed, ∆x=-1   that the starting endpoint is at the right 

 

yk+1 = yk – m      (8) 

 

When the slope is greater than 1 and ∆y = -1 with 

 

  xk+1 = xk-1(1/m)     (9) 

 

If the absolute value of the slope is less than 1 and the start endpoint is at the left, we set 

∆x = 1 and calculate y values with Eq. (6) 

 

When the start endpoint is at the right (for the same slope), we set ∆x = -1 and obtain y 

positions from Eq. (8). Similarly, when the absolute value of a negative slope is greater 

than 1, we use ∆y = -1 and Eq. (9) or we use ∆y = 1 and Eq. (7). 

 

 

 



 5 

Algorithm 

#define ROUND(a) ((int)(a+0.5)) 

void lineDDA (int xa, int ya, int xb, int yb) 

{ 

int dx = xb - xa, dy = yb - ya, steps, k; 

float xIncrement, yIncrement, x = xa, y = ya; 

if (abs (dx) > abs (dy) steps = abs (dx) ; 

else steps = abs dy); 

xIncrement = dx / (float) steps; 

yIncrement = dy / (float) steps 

setpixel (ROUND(x), ROUND(y) ) : 

for (k=0; k<steps; k++) 

{ 

x += xIncrement; 

y += yIncrement; 

setpixel (ROUND(x), ROUND(y)); 

} 

} 

 

Algorithm Description: 

 

Step 1 : Accept Input as two endpoint pixel positions 

Step 2: Horizontal and vertical differences between the endpoint positions are assigned to        

parameters dx and dy  (Calculate dx=xb-xa  and dy=yb-ya). 

Step 3: The difference with the greater magnitude determines the value of parameter 

steps.  

Step 4 : Starting with pixel position (xa, ya), determine the offset needed at each step to 

generate the next pixel position along the line path. 

Step 5: loop the following process for steps number of times 

 

a.  Use a unit of increment or decrement in the x and y direction 

b. if xa is less than xb the values of increment in the x and y directions are 1 and m 

c. if xa is greater than xb then the decrements -1 and – m are used. 

 

Example : Consider the line from (0,0) to (4,6)  

1. xa=0, ya =0  and  xb=4  yb=6 

2. dx=xb-xa = 4-0 = 4  and dy=yb-ya=6-0= 6 

3. x=0 and y=0 

4. 4 > 6  (false)  so, steps=6 

5. Calculate xIncrement = dx/steps = 4 / 6 = 0.66 and yIncrement = dy/steps =6/6=1 

6. Setpixel(x,y) = Setpixel(0,0) (Starting Pixel Position) 
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7. Iterate the calculation for xIncrement and yIncrement for steps(6) number of times 

8. Tabulation of the each iteration 

 

 

 

 

 

 

 

 

 

 

Result :  

 

 
 

Advantages of DDA Algorithm 

 

1. It is the simplest algorithm  

2. It is a is a faster method for calculating pixel positions 

 

Disadvantages of DDA Algorithm 

 

1. Floating point arithmetic in DDA algorithm is still time-consuming 

2. End point accuracy is poor 

 

Bresenham’s Line Algorithm 

 

An accurate and efficient raster line generating algorithm developed by Bresenham, that 

uses only incremental integer calculations. 

 

k x Y 
Plotting points 

(Rounded to Integer) 

0 0+0.66=0.66 0+1=1 (1,1)  

1 0.66+0.66=1.32 1+1=2 (1,2) 

2 1.32+0.66=1.98 2+1=3 (2,3) 

3 1.98+0.66=2.64 3+1=4 (3,4) 

4 2.64+0.66=3.3 4+1=5 (3,5) 

5 3.3+0.66=3.96 5+1=6 (4,6) 
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In addition, Bresenham’s line algorithm can be adapted to display circles and other 

curves. 

 

To illustrate Bresenham's approach, we- first consider the scan-conversion process for 

lines with positive slope less than 1.  

 

Pixel positions along a line path are then determined by sampling at unit x intervals. 

Starting from the left endpoint (x0,y0) of a given line, we step to each successive column 

(x position) and plot the pixel whose scan-line y value is closest to the line path.  

 

To determine the pixel  (xk,yk) is to be displayed, next to decide which pixel to plot the 

column xk+1=xk+1.(xk+1,yk) and .(xk+1,yk+1). At sampling position xk+1, we label vertical 

pixel separations from the mathematical line path as d1 and d2. The y coordinate on the 

mathematical line at pixel column position xk+1 is calculated as  

 

   y =m(xk+1)+b     (1) 

 

Then 

   d1 = y-yk 

   = m(xk+1)+b-yk 

   d2 = (yk+1)-y 

   = yk+1-m(xk+1)-b 

 

To determine which of the two pixel is closest to the line path, efficient test that is based 

on the difference between the two pixel separations 

 

   d1- d2 = 2m(xk+1)-2yk+2b-1   (2) 

 

A decision parameter Pk for the k
th 

 step in the line algorithm can be obtained by 

rearranging equation (2).  By substituting m=∆y/∆x where ∆x and ∆y are the vertical and 

horizontal separations of the endpoint positions and defining the decision parameter as 

 

pk = ∆x (d1- d2) 

        = 2∆y xk.-2∆x. yk + c   (3) 

 

The sign of  pk is the same as the sign of  d1- d2,since ∆x>0 

 

Parameter C is constant and has the value  2∆y + ∆x(2b-1) which is independent of the 

pixel position and will be eliminated in the recursive calculations for Pk. 

 

If the pixel at yk is “closer” to the line path than the pixel at yk+1 (d1< d2) than decision 

parameter Pk is negative. In this case, plot the lower pixel, otherwise plot the upper pixel.  

Coordinate changes along the line occur in unit steps in either the x or y directions.  
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To obtain the values of successive decision parameters using incremental integer 

calculations. At steps k+1, the decision parameter is evaluated from equation (3) as  

 

Pk+1 = 2∆y xk+1-2∆x. yk+1 +c 

 

Subtracting the equation (3) from the preceding equation 

 

   Pk+1 - Pk = 2∆y (xk+1  - xk) -2∆x(yk+1 - yk) 

 

But  xk+1= xk+1 so that 

 

   Pk+1 = Pk+ 2∆y-2∆x(yk+1 - yk)    (4) 

 

Where the term yk+1-yk  is either 0 or 1 depending on the sign of parameter Pk 

 

This recursive calculation of decision parameter is performed at each integer x position, 

starting at the left coordinate endpoint of the line. 

 

 The first parameter P0 is evaluated from equation   at the starting pixel position 

(x0,y0) and with m evaluated as  ∆y/∆x 

 

P0 = 2∆y-∆x     (5) 

 

Bresenham’s line drawing for a line with a positive slope less than 1 in the following 

outline of the algorithm. 

 

 The constants   2∆y and 2∆y-2∆x are calculated once for each line to be scan 

converted. 

 

Bresenham’s line Drawing Algorithm for |m| < 1 

 

1. Input  the two line endpoints and store the left end point in (x0,y0) 

2. load (x0,y0) into frame buffer, ie. Plot the first point. 

3. Calculate the constants ∆x, ∆y, 2∆y and obtain the starting value for the decision 

parameter as  P0 = 2∆y-∆x 

4. At each xk  along the line, starting at k=0 perform the following test 

 If  Pk < 0, the next point to plot is(xk+1,yk) and 

   Pk+1 = Pk + 2∆y 

 otherwise, the next point to plot is (xk+1,yk+1) and 

   Pk+1 = Pk + 2∆y - 2∆x 

 

5. Perform  step4   ∆x   times. 
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Implementation of Bresenham Line drawing Algorithm 

 

void lineBres (int xa,int ya,int xb, int yb) 

{ 

int dx = abs( xa – xb) , dy = abs (ya - yb); 

int p = 2 * dy – dx; 

int twoDy = 2 * dy, twoDyDx = 2 *(dy - dx); 

int  x , y, xEnd; 

 

/*  Determine which point to use as start, which as end * / 

 

if (xa > x b ) 

{ 

x = xb; 

y = yb; 

xEnd = xa; 

} 

 else  

{ 

x = xa; 

y = ya; 

xEnd = xb; 

} 

setPixel(x,y); 

while(x<xEnd) 

{ 

x++; 

if (p<0) 

p+=twoDy; 

else 

{ 

y++; 

p+=twoDyDx; 

} 

setPixel(x,y); 

} 

} 

 

Example : Consider the line with endpoints (20,10) to (30,18)  

The line has the slope m= (18-10)/(30-20)=8/10=0.8 
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∆x = 10       ∆y=8 

 

The initial decision parameter has the value  

 

p0 = 2Δy- Δx = 6 

 

and the increments for calculating successive decision parameters are 

 

2Δy=16                2Δy-2 Δx= -4  

 

We plot the initial point (x0,y0) = (20,10) and determine successive pixel positions along 

the line path from the decision parameter as 

 

Tabulation 

 

k pk (xk+1, yK+1) 

0 6 (21,11) 

1 2 (22,12) 

2 -2 (23,12) 

3 14 (24,13) 

4 10 (25,14) 

5 6 (26,15) 

6 2 (27,16) 

7 -2 (28,16) 

8 14 (29,17) 

9 10 (30,18) 

 

Result 
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Advantages 

 

 Algorithm is Fast 

 Uses only integer calculations 

 

Disadvantages 

 

It is meant only for basic line drawing. 

 

Line Function 

 

The two dimension line function is Polyline(n,wcPoints) where n is assigned an integer 

value equal to the number of coordinate positions to be input and wcPoints is the array of 

input world-coordinate values for line segment endpoints.  

 

polyline  function is used to define a set of n – 1 connected straight line segments 

 

To display a single straight-line segment we have to set n=2 and list the x and y values of 

the two endpoint coordinates in wcPoints. 

 

Example : following statements generate 2 connected line segments with endpoints at 

(50, 100), (150, 250), and (250, 100) 

 

typedef struct myPt{int x, y;}; 

myPt wcPoints[3]; 

wcPoints[0] .x = 50; wcPoints[0] .y = 100; 

wcPoints[1] .x = 150; wcPoints[1].y = 50; 

wcPoints[2].x = 250; wcPoints[2] .y = 100; 

polyline ( 3 , wcpoints); 

 

 

Circle-Generating Algorithms 

 

General function is available in a graphics library for displaying various kinds of curves, 

including circles and ellipses. 

Properties of a circle 

 

A circle is defined as a set of points that are all the given distance (xc,yc). 
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This distance relationship is expressed by the pythagorean theorem in Cartesian 

coordinates as 

 

                (x – xc)
2
 + (y – yc) 

2
 = r

2    
(1)

 

 

 

Use above equation to calculate the position of  points on a circle circumference by 

stepping along the x axis in unit steps from xc-r to xc+r  and calculating the corresponding 

y values at each position as 

 

                 y = yc  +(- ) (r
2
 – (xc –x )

2
)
1/2    

(2)
 

 

This is not the best method for generating a circle for the following reason 

 

Considerable amount of computation 

Spacing between plotted pixels is not uniform 

 

To eliminate the unequal spacing is to calculate points along the circle boundary using 

polar coordinates r and θ. Expressing the circle equation in parametric polar from yields 

the pair of equations 

 

 x = xc + rcos θ  y = yc + rsin θ 

 

When a display is generated with these equations using a fixed angular step size, a circle 

is plotted with equally spaced points along the circumference. To reduce calculations use 

a large angular separation between points along the circumference and connect the points 

with straight line segments to approximate the circular path.  

 

 Set the angular step size at 1/r. This plots pixel positions that are approximately 

one unit apart. The shape of the circle is similar in each quadrant. To determine the curve 

positions in the first quadrant, to generate he circle section in the second quadrant of the 

xy plane by nothing that the two circle sections are symmetric with respect to the y axis 
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and circle section in the third and fourth quadrants can be obtained from sections in the 

first and second quadrants by considering symmetry between octants. 

 

Circle sections in adjacent octants within one quadrant are symmetric with respect to the 

45
0
 line dividing the two octants. Where a point at position (x, y) on a one-eight circle 

sector is mapped into the seven circle points in the other octants of the xy plane. 

 

To generate all pixel positions around a circle by calculating only the points within the 

sector from x=0 to y=0. the slope of the curve in this octant has an magnitude less than of 

equal to 1.0. at x=0, the circle slope is 0 and at x=y, the slope is -1.0. 

 
 

Bresenham’s line algorithm for raster displays is adapted to circle generation by setting 

up decision parameters for finding the closest pixel to the circumference at each sampling 

step. Square root evaluations would be required to computer pixel siatances from a 

circular path. 

 

 Bresenham’s circle algorithm avoids these square root calculations by comparing 

the squares of the pixel separation distances. It is possible to perform a direct distance 

comparison without a squaring operation. 

 

 In this approach is to test the halfway position between two pixels to determine if 

this midpoint is inside or outside the circle boundary. This method is more easily applied 

to other conics and for an integer circle radius the midpoint approach generates the same 

pixel positions as the Bresenham circle algorithm. 

 

For a straight line segment the midpoint method is equivalent to the bresenham line 

algorithm. The error involved in locating pixel positions along any conic section using 

the midpoint test is limited to one half the pixel separations. 

 

 



 14 

Midpoint circle Algorithm: 

 

 In the raster line algorithm at unit intervals and determine the closest pixel 

position to the specified circle path at each step for a given radius r and screen center 

position (xc,yc) set up our algorithm to calculate pixel positions around a circle path 

centered at the coordinate position by adding xc to x and yc to y.  

 To apply the midpoint method we define a circle function as 

  fcircle(x,y) = x
2
+y

2
-r

2 

Any point (x,y) on the boundary of the circle with radius r satisfies the equation fcircle 

(x,y)=0. If the point is in the interior of the circle, the circle function is negative. And if 

the point is outside the circle the, circle function is positive 

 

  fcircle (x,y) <0, if (x,y) is inside the circle boundary 

     =0, if (x,y) is on the circle boundary 

     >0, if (x,y) is outside the circle boundary 

 

The tests in the above eqn  are performed for the midposition sbteween pixels near the 

circle path at each sampling step. The circle function is the decision parameter in the 

midpoint algorithm. 

 

 Midpoint between candidate pixels at sampling position xk+1 along a circular path. 

Fig -1 shows the midpoint between the two candidate pixels at sampling position xk+1. To 

plot the pixel at (xk,yk) next need to determine whether the pixel at position (xk+1,yk) or 

the one at position (xk+1,yk-1) is circular to the circle. 

 

 Our decision parameter is the circle function evaluated at the midpoint between 

these two pixels 

  Pk= fcircle (xk+1,yk-1/2) 

    =(xk+1)
2
+(yk-1/2)

2
-r

2 

If  Pk <0, this midpoint is inside the circle and the pixel on scan line yk is closer to the 

circle boundary. Otherwise the mid position is outside or on the circle boundary and 

select the pixel on scan line yk -1. 

 

 Successive decision parameters are obtained using incremental calculations. To 

obtain a recursive expression for the next decision parameter by evaluating the circle 

function at sampling position  xk+1+1= xk+2 

 

  Pk= fcircle (xk+1+1,yk+1-1/2) 

      =[(xk+1)+1]
2
+(yk+1-1/2)

2
-r

2 

   or 

  Pk+1=Pk+2(xk+1)+(y
2

k+1-y
2 

k
 
)-(yk+1-yk)+1 

 

Where yk+1 is either yk or yk-1 depending on the sign of Pk . 
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Increments for obtaining Pk+1 are either 2xk+1+1 (if  Pk is negative) or  

2xk+1+1-2 yk+1. 

 

 Evaluation of the terms 2xk+1 and 2 yk+1 can also be done incrementally as  

   2xk+1=2xk+2 

   2 yk+1=2 yk-2 

 

At the Start position (0,r) these two terms have the values 0 and 2r respectively. Each 

successive value for the 2xk+1 term is obtained by adding 2 to the previous value and each 

successive value for the 2yk+1 term is obtained by subtracting 2 from the previous value. 

 

 The initial decision parameter is obtained by evaluating the circle function at the 

start position (x0,y0)=(0,r) 

 

   P0= fcircle (1,r-1/2) 

     =1+(r-1/2)
2
-r

2 

or 

   P0=(5/4)-r 

 

 If the radius r is specified as an integer  

 

    P0=1-r(for r an integer) 

 

Midpoint circle Algorithm 

1.   Input radius r and circle center (xc,yc) and obtain the first point on the circumference 

of the circle centered on the origin as 

             (x0,y0) = (0,r) 

2. Calculate the initial value of the decision parameter as P0=(5/4)-r 

3. At each xk position, starting at k=0, perform the following test. If Pk <0 the next point 

along the circle centered on (0,0) is (xk+1,yk) and Pk+1=Pk+2xk+1+1 

Otherwise the next point along the circle is (xk+1,yk-1) and Pk+1=Pk+2xk+1+1-2 yk+1 

 Where 2xk+1=2xk+2 and 2yk+1=2yk-2 

4. Determine symmetry points in the other seven octants. 

5. Move each calculated pixel position (x,y) onto the circular path centered at (xc,yc) and 

plot the coordinate values. 

   x=x+xc    y=y+yc 

6. Repeat step 3 through 5 until x>=y. 
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Example : Midpoint Circle Drawing 

 

Given a circle radius r=10 

 

The circle octant in the first quadrant from x=0 to x=y. The initial value of the decision 

parameter is  P0=1-r =  - 9 

 

For the circle centered on the coordinate origin, the initial point is (x0,y0)=(0,10) and 

initial increment terms for calculating the decision parameters are  

  

  2x0=0   ,   2y0=20 

 

 Successive midpoint decision parameter values and the corresponding coordinate 

positions along the circle path are listed in the following table. 

 

k pk (xk+1, yk-1) 2xk+1 2yk+1 

0 -9 (1,10) 2 20 

1 -6 (2,10) 4 20 

2 -1 (3,10) 6 20 

3 6 (4,9) 8 18 

4 -3 (5,9) 10 18 

5 8 (6,8) 12 16 

6 5 (7,7) 14 14 
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Implementation of Midpoint Circle Algorithm 

 

void circleMidpoint (int xCenter, int yCenter, int radius) 

{ 

int x = 0; 

int y = radius; 

int p = 1 - radius; 

void circlePlotPoints (int, int, int, int); 

/*  Plot first set of points */ 

circlePlotPoints (xCenter, yCenter, x, y); 

while (x < y)  

{ 

x++ ; 

if (p < 0) 

p +=2*x +1; 

else  

{ 

y--; 

p +=2* (x - Y) + 1; 

} 

circlePlotPoints(xCenter, yCenter,  x,  y) 

} 

} 

void circlePlotPolnts (int xCenter, int yCenter, int x, int y) 

{ 

setpixel (xCenter + x, yCenter + y ) ; 

setpixel (xCenter - x. yCenter + y); 

setpixel (xCenter + x, yCenter - y); 

setpixel (xCenter - x, yCenter - y ) ; 

setpixel (xCenter + y, yCenter + x); 

setpixel (xCenter - y , yCenter + x); 

setpixel (xCenter t y , yCenter - x); 

setpixel (xCenter - y , yCenter - x); 

} 

 

 

Ellipse-Generating Algorithms 

 

An ellipse is an elongated circle. Therefore, elliptical curves can be generated by 

modifying circle-drawing procedures to take into account the different dimensions of an 

ellipse along the major and minor axes. 
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Properties of ellipses 

 

An ellipse can be given in terms of the distances from any point on the ellipse to two 

fixed positions called the foci of the ellipse. The sum of these two distances is the same 

values for all points on the ellipse. 

 

 If the distances to the two focus positions from any point p=(x,y) on the ellipse are 

labeled d1 and d2, then the general equation of an ellipse can be stated as 

 

    d1+d2=constant  

 
 Expressing distances d1 and d2 in terms of the focal coordinates F1=(x1,y2) and 

F2=(x2,y2) 

  sqrt((x-x1)
2
+(y-y1)

2
)+sqrt((x-x2)

2
+(y-y2)

2
)=constant 

 

 By squaring this equation isolating the remaining radical and squaring again. The 

general ellipse equation in the form 

 

  Ax
2
+By

2
+Cxy+Dx+Ey+F=0 

 

The coefficients A,B,C,D,E, and  F are evaluated in terms of the focal coordinates and the 

dimensions of the major and minor axes of the ellipse. 

 

 The major axis is the straight line segment extending from one side of the ellipse 

to the other through the foci. The minor axis spans the shorter dimension of the ellipse, 

perpendicularly bisecting the major axis at the halfway position (ellipse center) between 

the two foci. 

 

 An interactive method for specifying an ellipse in an arbitrary orientation is to 

input the two foci and a point on the ellipse boundary. 

 

 Ellipse equations are simplified if the major and minor axes are oriented to align 

with the coordinate axes. The major and minor axes oriented parallel to the x and y axes 

parameter rx for this example labels the semi major axis and parameter ry labels the semi 

minor axis 
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   ((x-xc)/rx)
2
+((y-yc)/ry)

2
=1 

 

 
 

 Using polar coordinates r and θ, to describe the ellipse in Standard position with 

the parametric equations 

 

 x=xc+rxcos θ 

 y=yc+rxsin θ 

  

 

Angle θ called the eccentric angle of the ellipse is measured around the perimeter of a 

bounding circle. 

 

We must calculate pixel positions along the elliptical arc throughout one quadrant, and 

then we obtain positions in the remaining three quadrants by symmetry 

 

 
Midpoint ellipse Algorithm 

 

 The midpoint ellipse method is applied throughout the first quadrant in two parts.  

 

The below figure show the division of the first quadrant according to the slope of an 

ellipse with rx<ry. 
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In the x direction where the slope of the curve has a magnitude less than 1 and unit steps 

in the y direction where the slope has a magnitude greater than 1. 

 

Region 1 and 2 can be processed in various ways 

 

 1. Start at position (0,ry) and step clockwise along the elliptical path in the first 

quadrant shifting from unit steps in x to unit steps in y when the slope becomes less than  

-1 

 2.  Start at (rx,0) and select points in a counter clockwise order. 

  2.1 Shifting from unit steps in y to unit steps in x when the slope becomes 

greater than -1.0 

  2.2 Using parallel processors calculate pixel positions in the two regions 

simultaneously 

 3. Start at (0,ry) 

  step along the ellipse path in clockwise order throughout the first quadrant 

ellipse function (xc,yc)=(0,0)  

  fellipse (x,y)=ry
2
x

2
+rx

2
y

2
 –rx

2
 ry

2 

which has the following properties: 

  fellipse (x,y)  <0, if (x,y) is inside the ellipse boundary 

          =0, if(x,y) is on ellipse boundary 

          >0, if(x,y) is outside the ellipse boundary 

 Thus, the ellipse function  fellipse (x,y) serves as the decision parameter in the 

midpoint algorithm. 

 

Starting at (0,ry): 

 

 Unit steps in the x direction until to reach the boundary between region 1 and 

region 2. Then switch to unit steps in the y direction over the remainder of the curve in 

the first quadrant. 
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 At each step to test the value of the slope of the curve. The ellipse slope is 

calculated   

 

  dy/dx= -(2ry
2
x/2rx

2
y) 

 

At the boundary between region 1 and region 2 

 

   dy/dx = -1.0 and 2ry
2
x=2rx

2
y 

 

to more out of region 1 whenever 

 

   2ry
2
x>=2rx

2
y 

 

The following figure shows the midpoint between two candidate pixels at sampling 

position xk+1 in the first region. 

 

 
 

To determine the next position along the ellipse path by evaluating the decision 

parameter at this mid point 

 

  P1k = fellipse (xk+1,yk-1/2) 

         = ry
2
 (xk+1)

2
 + rx

2
 (yk-1/2)

2
 – rx

2
 ry

2 

 

 
 if  P1k <0, the midpoint is inside the ellipse and the pixel on scan line yk  is 

closer to the ellipse boundary. Otherwise the midpoint is outside or on the ellipse 

boundary and select the pixel on scan line yk-1  

 

 At the next sampling position (xk+1+1=xk+2) the decision parameter for region 1 is 

calculated as 
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p1k+1  = fellipse(xk+1  +1,yk+1  -½ )   

          =ry
2
[(xk  +1) + 1]

2
 + rx

2
 (yk+1  -½)

2 
 - rx

2
 ry

2 
 

     Or 

 

p1k+1   = p1k  +2 ry
2
(xk  +1)   + ry

2
  + rx

2
 [(yk+1  -½)

2
 -  (yk  -½)

2
] 

 

Where yk+1 is yk or   yk-1 depending on the sign of P1k. 

 

Decision parameters are incremented by the following amounts 

 

increment = { 2 ry
2
(xk  +1)   + ry

2
                           if p1k  <0 } 

                      { 2 ry
2
(xk  +1)   + ry

2
  - 2rx

2
 yk+1             if  p1k  ≥ 0  } 

 

Increments for the decision parameters can be calculated using only addition and 

subtraction as in the circle algorithm. 

 

 The terms 2ry
2
 x and 2rx

2
 y can be obtained incrementally. At the initial position 

(0,ry) these two terms evaluate to 

 2 ry
2
x = 0 

    2rx
2
 y =2rx

2
 ry  

 x and y are incremented updated values are obtained by adding  2ry
2
to the current 

value of the increment term and subtracting  2rx
2 

from the current value of the increment 

term. The updated increment values are compared at each step and more from region 1 to 

region 2. when the condition 4 is satisfied. 

 

 In region 1 the initial value of the decision parameter is obtained by evaluating the 

ellipse function at the start position  

 

   (x0,y0) = (0,ry) 

 

region 2 at unit intervals in the negative y direction and the midpoint is now taken 

between horizontal pixels at each step for this region the decision parameter is evaluated 

as 

 

p10  = fellipse(1,ry  -½ )  

       = ry
2 

+ rx
2
 (ry  -½)

2 
 - rx

2
 ry

2
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       Or 

        p10  =  ry
2 
 - rx

2
 ry  

 
 + ¼ rx

2
  

over region 2, we sample at unit steps in the negative y direction and the midpoint is now 

taken between horizontal pixels at each step. For this region, the decision parameter is 

evaluated as  

 

        p2k  = fellipse(xk +½  ,yk - 1)  

       = ry
2 

(xk +½  )
2
 + rx

2
 (yk - 1)

2 
 - rx

2
 ry

2
 

 

 1. If  P2k >0, the mid point position is outside the ellipse boundary, and select the 

pixel at xk. 

 2. If P2k <=0, the mid point is inside the ellipse boundary and select pixel position 

xk+1.  

 To determine the relationship between successive decision parameters in region 2 

evaluate the ellipse function at the sampling step :  yk+1 -1= yk-2. 

 

          P2k+1  = fellipse(xk+1  +½,yk+1  -1 )   

          =ry
2
(xk  +½) 

2
 + rx

2
 [(yk+1  -1) -1]

2 
 - rx

2
 ry

2
 

      or 

p2k+1   = p2k  -2 rx
2
(yk  -1)   + rx

2
  + ry

2
 [(xk+1  +½)

2
 -  (xk  +½)

2
] 

 

With xk+1set either to xkor xk+1, depending on the sign of P2k. when we enter 

region 2, the initial position (x0,y0) is taken as the last position. Selected in region 1 and 

the initial decision parameter in region 2 is then 

 

p20  = fellipse(x0 +½  ,y0 - 1)  

       = ry
2 

(x0 +½  )
2
 + rx

2
 (y0 - 1)

2 
 - rx

2
 ry

2 
 

 

To simplify the calculation of P20, select pixel positions in counter clock wise 

order starting at (rx,0). Unit steps would then be taken in the positive y direction up to the 

last position selected in region 1. 

 

Mid point Ellipse Algorithm 

 

1. Input  rx,ry and ellipse center (xc,yc) and obtain the first point on an ellipse 

centered on the origin as 



 24 

                  (x0,y0) = (0,ry) 

   

2. Calculate the initial value of the decision parameter in region 1 as 

  P10=ry
2
-rx

2
ry +(1/4)rx

2 

 

3. At each xk position in region1 starting at k=0 perform the following test. If 

P1k<0, the next point along the ellipse centered on (0,0) is (xk+1, yk) and 

   

   p1k+1   = p1k  +2 ry
2
xk +1  + ry

2
   

 

 Otherwise the next point along the ellipse is (xk+1, yk-1) and  

 

   p1k+1   = p1k  +2 ry
2
xk +1 - 2rx

2
 yk+1  + ry

2
   

 

 with  

 

            2 ry
2
xk  +1 =    2 ry

2
xk   + 2ry

2
    

   2 rx
2
yk  +1 =    2 rx

2
yk   + 2rx

2
   

                      

 And continue until 2ry
2
 x>=2rx

2
 y 

 

4. Calculate the initial value of the decision parameter in region 2 using the last 

point (x0,y0) is the last position calculated in region 1. 

 

  p20 = ry
2
(x0+1/2)

2
+rx

2
(yo-1)

2
 – rx

2
ry

2
 

 

5. At each position yk in region 2, starting at k=0 perform the following test, If  

p2k>0  the next point along the ellipse centered on (0,0) is (xk,yk-1) and 

 

 p2k+1 = p2k – 2rx
2
yk+1+rx

2
 

 

Otherwise the next point along the ellipse is (xk+1,yk-1) and 

 

    p2k+1 = p2k + 2ry
2
xk+1 – 2rxx

2
yk+1 + rx

2
 

 

Using the same incremental calculations for x any y as in region 1. 

 

6. Determine symmetry points in the other three quadrants. 

7. Move each calculate pixel position (x,y) onto the elliptical path centered on 

(xc,yc) and plot the coordinate values 

   x=x+xc,  y=y+yc  

8. Repeat the steps for region1 unit   2ry
2
x>=2rx

2
y 
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Example : Mid point ellipse drawing 

 

 Input ellipse parameters rx=8 and ry=6 the mid point ellipse algorithm by 

determining raster position along the ellipse path is the first quadrant. Initial 

values and increments for the decision parameter calculations are 

      2ry
2
 x=0  (with increment 2ry

2
=72 ) 

   2rx
2
 y=2rx

2
 ry (with increment -2rx

2
= -128 ) 

 

For region 1 the initial point for the ellipse centered on the origin is (x0,y0) = 

(0,6) and the initial decision parameter value is 

 

p10=ry
2
-rx

2
ry

2
+1/4rx

2
=-332     

 

Successive midpoint decision parameter values and the pixel positions along the 

ellipse are listed in the following table. 

 

k p1k xk+1,yk+1 2ry
2
xk+1 2rx

2
yk+1 

0 -332 (1,6) 72 768 

1 -224 (2,6) 144 768 

2 -44 (3,6) 216 768 

3 208 (4,5) 288 640 

4 -108 (5,5) 360 640 

5 288 (6,4) 432 512 

6 244 (7,3) 504 384 

 

 

Move out of region 1, 2ry2x >2rx
2
y . 

 

For a region 2 the initial point is (x0,y0)=(7,3) and the initial decision parameter 

is  

  p20 = fellipse(7+1/2,2) = -151 

 

The remaining positions along the ellipse path in the first quadrant are then 

calculated as 

 

k P2k xk+1,yk+1 2ry
2
xk+1 2rx

2
yk+1 

0 -151 (8,2) 576 256 

1 233 (8,1) 576 128 

2 745 (8,0) - - 
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Implementation of Midpoint Ellipse drawing 

 

#define Round(a) ((int)(a+0.5)) 

void ellipseMidpoint (int xCenter, int yCenter, int Rx, int Ry) 

{ 

int  Rx2=Rx*Rx; 

int  Ry2=Ry*Ry; 

int twoRx2 = 2*Rx2; 

int twoRy2 = 2*Ry2; 

int p; 

int x = 0; 

int y = Ry; 

int px = 0; 

int py = twoRx2* y; 

void ellipsePlotPoints ( int , int , int , int ) ; 

/*  Plot the first set of points */ 

ellipsePlotPoints (xcenter, yCenter, x,y ) ; 

 

/ * Region 1 */ 

p = ROUND(Ry2 - (Rx2* Ry) + (0.25*Rx2)); 

while (px < py) 

{ 

x++; 

px += twoRy2; 

i f (p < 0) 

p += Ry2 + px; 

else  

{ 

y - - ; 

py -= twoRx2; 

p += Ry2 + px - py; 

} 

ellipsePlotPoints(xCenter, yCenter,x,y); 

} 

/* Region 2 */ 

p = ROUND (Ry2*(x+0.5)*' (x+0.5)+ Rx2*(y- l )* (y- l ) - Rx2*Ry2); 

while (y > 0 ) 

{ 

y--; 

py -= twoRx2; 

i f (p > 0) 

p += Rx2 - py; 

else  
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{ 

x++; 

px+=twoRy2; 

p+=Rx2-py+px; 

} 

ellipsePlotPoints(xCenter, yCenter,x,y); 

} 

} 

void ellipsePlotPoints(int xCenter, int yCenter,int x,int y); 

{ 

setpixel (xCenter + x, yCenter + y); 

setpixel (xCenter - x, yCenter + y); 

setpixel (xCenter + x, yCenter - y); 

setpixel (xCenter- x, yCenter - y); 

} 

 

 
 

 

 

Attributes of output primitives 

Any parameter that affects the way a primitive is to be displayed is referred to as an 

attribute parameter.  Example attribute parameters are color, size etc. A line drawing 

function for example could contain parameter to set color, width and other properties. 

 

1. Line Attributes 

2. Curve Attributes 

3. Color and Grayscale Levels 

4. Area Fill Attributes 

5. Character Attributes 

6. Bundled Attributes 
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Line Attributes 

 

Basic attributes of a straight line segment are its type, its width, and its color. In some 

graphics packages, lines can also be displayed using selected pen or brush options 

 

 Line Type 

 Line Width 

 Pen and Brush Options 

 Line Color 

 

Line type 

 

Possible selection of line type attribute includes solid lines, dashed lines and dotted lines. 

To set line type attributes in a PHIGS application program, a user invokes the function 

 

setLinetype (lt) 

 

Where parameter lt is assigned a positive integer value of 1, 2, 3 or 4 to generate lines 

that are solid, dashed, dash dotted respectively. Other values for line type parameter it 

could be used to display variations in dot-dash patterns. 

 

Line width 

 

Implementation of line width option depends on the capabilities of the output device to 

set the line width attributes. 

 

  setLinewidthScaleFactor(lw) 

 

Line width parameter lw is assigned a positive number to indicate the relative width of 

line to be displayed. A value of 1 specifies a standard width line. A user could set lw to a 

value of 0.5 to plot a line whose width is half that of the standard line. Values greater 

than 1 produce lines thicker than the standard. 

  

Line Cap 

 

We can adjust the shape of the line ends to give them a better appearance by adding line 

caps.  

 

There are three types of line cap. They are  

 Butt cap 

 Round cap 

 Projecting square cap 



 29 

 

Butt cap obtained by adjusting the end positions of the component parallel lines so that 

the thick line is displayed with square ends that are perpendicular to the line path. 

 

Round cap obtained by adding a filled semicircle to each butt cap. The circular arcs are 

centered on the line endpoints and have a diameter equal to the line thickness 

 

 Projecting square cap extend the line and add butt caps that are positioned one-half of 

the line width beyond the specified endpoints. 

 

 
 

Three possible methods for smoothly joining two line segments 

 

 Mitter Join 

 Round Join 

 Bevel Join 

 

 

1. A miter join accomplished by extending the outer boundaries of each of the two lines 

until they meet. 

2. A round join is produced by capping the connection between the two segments with a 

circular boundary whose diameter is equal to the width. 

3. A bevel join is generated by displaying the line segment with but caps and filling in tri 

angular gap where the segments meet 



 30 

 
Pen and Brush Options 

 

With some packages, lines can be displayed with pen or brush selections. Options in this 

category include shape, size, and pattern. Some possible pen or brush shapes are given in 

Figure 

 
Line color 

 

A poly line routine displays a line in the current color by setting this color value in the 

frame buffer at pixel locations along the line path using the set pixel procedure.  

We set the line color value in PHlGS with the function 

 

setPolylineColourIndex (lc) 

 

Nonnegative integer values, corresponding to allowed color choices, are assigned to the 

line color parameter lc 

 

Example : Various line attribute commands in an applications program is given by the 

following sequence of statements 
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setLinetype(2); 

setLinewidthScaleFactor(2); 

setPolylineColourIndex (5); 

polyline(n1,wc  points1); 

setPolylineColorIindex(6); 

poly line (n2, wc points2); 

 

This program segment would display two figures, drawn with double-wide dashed lines. 

The first is displayed in a color corresponding to code 5, and the second in color 6. 

 

Curve attributes 

Parameters for curve attribute are same as those for line segments. Curves displayed with 

varying colors, widths, dot –dash patterns and available pen or brush options 
 

Color and Grayscale Levels 

 

Various color and intensity-level options can be made available to a user, depending on 

the capabilities and design objectives of a particular system 

 

In a color raster system, the number of color choices available depends on the amount of 

storage provided per pixel in the frame buffer 

 

Color-information can be stored in the frame buffer in two ways: 

 

 We can store color codes directly in the frame buffer 

 We can put the color codes in a separate table and use pixel values as an index into 

this table 

 

With the direct storage scheme, whenever a particular color code is specified in an 

application program, the corresponding binary value is placed in the frame buffer for 

each-component pixel in the output primitives to be displayed in that color.  

 

A minimum number of colors can be provided in this scheme with 3 bits of storage per 

pixel, as shown in Table 
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Color tables(Color Lookup Tables)  are an alternate means for providing extended color 

capabilities to a user without requiring large frame buffers 
 

 
 

 

3 bits -  8 choice of color 

6 bits – 64 choice of color 

8 bits – 256 choice of color 

 

 

A user can set color-table entries in a PHIGS applications program with the function 

 

setColourRepresentation (ws, ci, colorptr) 
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Parameter ws identifies the workstation output device; parameter ci specifies the color 

index, which is the color-table position number (0 to 255) and parameter colorptr points 

to a trio of RGB color values (r, g, b) each specified in the range from 0 to 1 

 

Grayscale 

 

With monitors that have no color capability, color functions can be used in an application 

program to set the shades of gray, or grayscale, for displayed primitives. Numeric values 

over the range from 0 to 1 can be used to specify grayscale levels, which are then 

converted to appropriate binary codes for storage in the raster. 

 

 
Intensity = 0.5[min(r,g,b)+max(r,g,b)] 

 

Area fill Attributes 

 Options for filling a defined region include a choice between a solid color or a 

pattern fill and choices for particular colors and patterns 

 

Fill Styles 

 

Areas are displayed with three basic fill styles: hollow with a color border, filled with a 

solid color, or filled with a specified pattern or design. A basic fill style is selected in a 

PHIGS program with the function 

 

setInteriorStyle(fs) 

 

Values for the fill-style parameter fs include hollow, solid, and pattern. Another value for 

fill style is hatch, which is used to fill an area with selected hatching patterns-parallel 

lines or crossed lines 
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The color for a solid interior or for a hollow area outline is chosen with where fill color 

parameter fc is set to the desired color code 

 

setInteriorColourIndex(fc) 

 

Pattern Fill 

 

We select fill patterns with  setInteriorStyleIndex (pi) where pattern index parameter pi 

specifies a table position 

 

For example, the following set of statements would fill the area defined in the fillArea 

command with the second pattern type stored in the pattern table: 

 

SetInteriorStyle( pattern) 

SetInteriorStyleIndex(2); 

Fill area (n, points) 
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Character Attributes 

 

The appearance of displayed character is controlled by attributes such as font, size, color 

and orientation. Attributes can be set both for entire character strings (text) and for 

individual characters defined as marker symbols 

 

Text Attributes 

 

The choice of font or type face is set of characters with a particular design style as 

courier, Helvetica, times roman, and various symbol groups. 

 

 The characters in a selected font also be displayed with styles. (solid, dotted, 

double) in bold face in italics, and in  or sshhaaddooww styles. 

 

A particular  font and associated stvle is selected in a PHIGS program by setting an 

integer  code for the text font parameter tf in the function 

 

setTextFont(tf) 

 

Control of text color (or intensity) is managed from an application program with 

 

setTextColourIndex(tc) 

 

 where text color parameter tc specifies an allowable color code. 

 

Text size can be adjusted without changing the width to height ratio of characters with  

SetCharacterHeight (ch) 

 

Parameter ch is assigned a real value greater than 0 to set the coordinate height of capital 

letters 

 

The width only of text can be set with function. 

  SetCharacterExpansionFactor(cw) 
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Where the character width parameter cw is set to a positive real value that scales the body 

width of character 

 

 
 

Spacing between characters is controlled separately with 

 

setCharacterSpacing(cs) 

 

where the character-spacing parameter cs can he assigned any real value 

 

 
 

The orientation for a displayed character string is set according to the direction of the 

character up vector 

 

setCharacterUpVector(upvect) 

 

Parameter upvect in this function is assigned two values that specify the x and y vector 

components. For example, with upvect = (1, 1), the direction of the up vector is 45
o
 and 

text would be displayed as shown in Figure. 

 

 
To arrange character strings vertically or horizontally 

 

    setTextPath (tp) 
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Where the text path parameter tp can be assigned the value: right, left, up, or down 

 
 

Another handy attribute for character strings is alignment. This attribute specifies how 

text is to be  positioned with respect to the $tart coordinates. Alignment attributes are set 

with 

 

setTextAlignment (h,v) 

 

where parameters h and v control horizontal and vertical alignment. Horizontal alignment 

is set by assigning h a value of left, center, or right.  Vertical alignment is set by 

assigning v a value of top, cap, half, base or bottom.  

 

A precision specification for text display is given with  

 

  setTextPrecision (tpr) 

 

 tpr is assigned one of  values string, char or stroke. 

 

Marker Attributes 

 

A marker symbol is a single character that can he displayed in different colors and in 

different sizes. Marker attributes are implemented by procedures that load the chosen 

character into the raster at the defined positions with the specified color and size. We 

select a particular character to be the marker symbol with 

 

setMarkerType(mt) 

 

where marker type parameter mt is set to an integer code. Typical codes for marker type 

are the integers 1 through 5, specifying, respectively, a dot (.) a vertical cross (+), an 

asterisk (*), a circle (o), and a diagonal cross (X).  
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We set the marker size with 

 

setMarkerSizeScaleFactor(ms) 

 

with  parameter marker size ms assigned a positive number. This scaling parameter is 

applied to the nominal size for the particular marker symbol chosen. Values greater than 

1 produce character enlargement; values less than 1 reduce the marker size. 

 

Marker color is specified with  

 

setPolymarkerColourIndex(mc) 

 

A selected color code parameter mc is stored in the current attribute list and used to 

display subsequently specified marker primitives 

 

Bundled Attributes 

 

The procedures considered so far each function reference a single attribute that specifies 

exactly how a primitive is to be displayed these specifications are called individual 

attributes. 

 

A particular set of attributes values for a primitive on each output device is chosen by 

specifying appropriate table index. Attributes specified in this manner are called bundled 

attributes. The choice between a bundled or an unbundled specification is made by setting 

a switch called the aspect source flag for each of these attributes 

 

  setIndividualASF( attributeptr, flagptr) 

 

where parameter attributer ptr points to a list of attributes and parameter flagptr points to 

the corresponding list of aspect source flags. Each aspect source flag can be assigned a 

value of individual or bundled. 

 

Bundled line attributes 

 

Entries in the bundle table for line attributes on a specified workstation are set with the 

function 

 

 setPolylineRepresentation (ws, li, lt, lw, lc) 

  

Parameter ws is the workstation identifier and line index parameter li defines the bundle 

table position. Parameter lt, lw, tc are then bundled and assigned values to set the line 

type, line width, and line color specifications for designated table index. 

 



 39 

Example 

 

setPolylineRepresentation(1,3,2,0.5,1) 

 setPolylineRepresentation (4,3,1,1,7) 

 

 A poly line that is assigned a table index value of 3 would be displayed using 

dashed lines at half thickness in a blue color on work station 1; while on workstation 4, 

this same index generates solid, standard-sized white lines 

 

Bundle area fill Attributes 

 

Table entries for bundled area-fill attributes are set with 

 

  setInteriorRepresentation (ws, fi, fs, pi, fc) 

 

Which defines the attributes list corresponding to fill index fi on workstation ws. 

Parameter fs, pi and fc are assigned values for the fill style pattern index and fill color.  

 

Bundled Text Attributes 

 

  setTextRepresentation (ws, ti, tf, tp, te, ts, tc)  

 

bundles values for text font, precision expansion factor size an color in a table position 

for work station ws that is specified by value assigned to text index parameter ti. 

 

Bundled  marker Attributes 

 

  setPolymarkerRepresentation (ws, mi, mt, ms, mc)  

 

 That defines marker type marker scale factor marker color for index mi on 

workstation ws. 

 

Inquiry functions 

Current settings for attributes and other parameters as workstations types and status in the 

system lists can be retrieved with inquiry functions. 

  inquirePolylineIndex ( lastli) and   

  inquireInteriorcColourIndex (lastfc) 

Copy the current values for line index and fill color into parameter lastli and lastfc. 
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Two Dimensional Geometric Transformations 

 

Changes in orientations, size and shape are accomplished with geometric transformations 

that alter the coordinate description of objects. 

 

Basic transformation 

 

 Translation 

 T(tx, ty) 

 Translation distances 

 Scale 

 S(sx,sy) 

 Scale factors 

 Rotation 

 R() 

 Rotation angle  

Translation 

 A translation is applied to an object by representing it along a straight line path 

from one coordinate location to another adding translation distances, tx, ty to original 

coordinate position (x,y) to move the point to a new position (x’,y’) to  

  x’ = x + tx, y’ = y + ty 
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The translation distance point (tx,ty) is called translation vector or shift vector. 

Translation equation can be expressed as single matrix equation by using column vectors 

to represent the coordinate position and the translation vector as 

 

 

 

 

 

 

 

 

 

 

 

 
Moving a polygon from one  position to another position  with the translation 

vector (-5.5, 3.75)  

Rotations: 

 A two-dimensional rotation is applied to an object by repositioning it along a 

circular path on xy plane. To generate a rotation, specify a rotation angle θ and the 

position (xr,yr) of the rotation point (pivot point) about which the object is to be rotated. 

 Positive values for the rotation angle define counter clock wise rotation about 

pivot point. Negative value of angle rotate objects in clock wise direction. The 

transformation can also be described as a rotation about a rotation axis perpendicular to 

xy plane and passes through pivot point 
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Rotation of a point from position (x,y) to position (x’,y’) through angle θ relative to 

coordinate origin 

The transformation equations for rotation of a point position P when the pivot point  is at 

coordinate origin. In figure r is constant distance of the point positions Ф is the original 

angular of the point from horizontal and θ is the rotation angle. 

The transformed coordinates in terms of angle θ and Ф 

 x’ = rcos(θ+Ф) = rcosθ cosФ – rsinθsinФ 

 y’ = rsin(θ+Ф) = rsinθ cosФ + rcosθsinФ 

The original coordinates of the point in polar coordinates 

  x = rcosФ, y = rsinФ 

the transformation equation for rotating a point at position (x,y) through an angle θ about 

origin  

x’ = xcosθ – ysinθ 

y’ = xsinθ + ycosθ 

Rotation equation 

 P’= R . P 

Rotation Matrix 

R = 
   
    





 





cossin

sincos
 



 43 

 

  

 

Note : Positive values for the rotation angle define counterclockwise rotations about the 

rotation point and negative values rotate objects in the clockwise. 

Scaling 

A scaling transformation alters the size of an object. This operation can be carried out for 

polygons by multiplying the coordinate values (x,y) to each vertex by scaling factor Sx & 

Sy to produce the transformed coordinates (x’,y’) 

  x’= x.Sx  y’ = y.Sy 

scaling factor Sx scales object in x direction while Sy scales in y direction. 

The transformation equation in matrix form 
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or 

 P’ = S. P 

Where S is 2 by 2 scaling matrix 

  

Turning a square (a) Into a rectangle (b) with scaling factors sx = 2 and  sy=  1. 

 

Any positive numeric values are valid for scaling factors sx and sy. Values less than 1 

reduce the size of the objects and values greater than 1 produce an enlarged object.  
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There are two types of Scaling. They are 

 

Uniform scaling 

Non Uniform Scaling 

 

To get uniform scaling it is necessary to assign same value for sx and sy. Unequal values 

for sx and sy result in a non uniform scaling. 

 

Matrix Representation and homogeneous Coordinates 

Many graphics applications involve sequences of geometric transformations. An 

animation, for example, might require an object to be translated and rotated at each 

increment of the motion. In order to combine sequence of transformations we have to 

eliminate the matrix addition. To achieve this we have represent matrix as 3 X 3 instead 

of 2 X 2 introducing an additional dummy coordinate h. Here points are specified by 

three numbers instead of two. This coordinate system is called as Homogeneous 

coordinate system and it allows to express transformation equation as matrix 

multiplication 

 

Cartesian coordinate position (x,y) is represented as homogeneous coordinate 

triple(x,y,h) 

  

• Represent coordinates as (x,y,h) 

• Actual coordinates drawn will be (x/h,y/h) 
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For Scaling 
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For rotation 
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Composite Transformations 

 A composite transformation is a sequence of transformations; one followed by the other.  

we can set up a matrix for any sequence of transformations as a composite 

transformation matrix by calculating the matrix product of the individual 

transformations 

 

Translation 

If two successive translation vectors (tx1,ty1) and (tx2,ty2) are applied to a coordinate 

position P, the final transformed location P’ is calculated as 

P’=T(tx2,ty2).{T(tx1,ty1).P} 

={T(tx2,ty2).T(tx1,ty1)}.P 

Where P and P’ are represented as homogeneous-coordinate column vectors. 
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Or 

T(tx2,ty2).T(tx1,ty1) = T(tx1+tx2,ty1+ty2) 

Which demonstrated the two successive translations are additive. 

Rotations 

Two successive rotations applied to point P produce the transformed position 

P’=R(θ2).{R(θ1).P}={R(θ2).R(θ1)}.P 
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By multiplying the two rotation matrices, we can verify that two successive rotation are 

additive 

R(θ2).R(θ1) = R(θ1+ θ2) 

So that the final rotated coordinates can be calculated with the composite rotation matrix 

as 

P’ = R(θ1+ θ2).P 
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Scaling 

Concatenating transformation matrices for two successive scaling operations produces 

the following composite scaling matrix 
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General Pivot-point Rotation 

1. Translate the object so that pivot-position is moved to the coordinate origin  

2. Rotate the object about the coordinate origin 

Translate the object so that the pivot point is returned to its original position  
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The composite transformation matrix for this sequence is obtain with the concatenation 

 

Which can also be expressed as T(xr,yr).R(θ).T(-xr,-yr) = R(xr,yr,θ)  

General fixed point scaling 

Translate object so that the fixed point coincides with the coordinate origin 

Scale the object with respect to the coordinate origin 

Use the inverse translation of step 1 to return the object to its original position 
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Concatenating the matrices for these three operations produces the required scaling matix 

 

Can also be expressed as T(xf,yf).S(sx,sy).T(-xf,-yf) = S(xf, yf, sx, sy)  

Note : Transformations can be combined by matrix multiplication 

 

 

 

Implementation of composite transformations 

#include <math.h> 

#include <graphics.h> 

typedef  float Matrix3x3 [3][3]; 

Matrix3x3 thematrix; 

 

void matrix3x3SetIdentity (Matrix3x3 m) 

{ 

int i,j; 

for (i=0; i<3; i++)  

for (j=0: j<3; j++ )  

m[il[j] = (i == j); 

} 
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/ * Multiplies  matrix a times b, putting result in b */ 

void matrix3x3PreMultiply (Matrix3x3 a. Matrix3x3 b) 

{ 

int r,c: 

Matrix3x3 tmp: 

for (r = 0; r < 3: r++) 

for (c = 0; c < 3; c++) 

tmp[r][c] =a[r][0]*b[0][c]+ a[r][1]*b[l][c] + a[r][2]*b[2][c]: 

for (r = 0: r < 3: r++) 

for Ic = 0; c < 3: c++) 

b[r][c]=- tmp[r][c]: 

} 

 

void translate2 (int tx, int ty) 

{ 

Matrix3x3 m: 

rnatrix3x3SetIdentity (m) : 

m[0][2] = tx; 

m[1][2] = ty: 

matrix3x3PreMultiply (m, theMatrix); 

} 

vold scale2 (float sx. float sy, wcPt2 refpt) 

( 

Matrix3x3 m. 

matrix3x3SetIdentity (m); 

m[0] [0] = sx; 

m[0][2] = (1 - sx)* refpt.x; 

m[l][l] = sy; 

m[10][2] = (1 - sy)* refpt.y; 

matrix3x3PreMultiply (m, theMatrix); 

} 

 

void rotate2 (float a, wcPt2 refPt) 

{ 

Matrix3x3 m; 

matrix3x3SetIdentity (m): 

a = pToRadians (a); 

m[0][0]= cosf (a); 

m[0][1] = -sinf (a) ; 

m[0] [2] = refPt.x * (1 - cosf (a)) + refPt.y sinf (a); 

m[1] [0] = sinf (a); 

m[l][l] = cosf (a]; 
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m[l] [2] = refPt.y * (1 - cosf (a) - refPt.x * sinf ( a ) ; 

matrix3x3PreMultiply (m, theMatrix); 

} 

 

void transformPoints2 (int npts, wcPt2 *pts) 

{ 

int k: 

float tmp ; 

for (k = 0; k< npts: k++)  

{ 

tmp = theMatrix[0][0]* pts[k] .x * theMatrix[0][1] * pts[k].y+ theMatrix[0][2]; 

pts[k].y = theMatrix[1][0]* pts[k] .x * theMatrix[1][1] * pts[k].y+ theMatrix[1][2]; 

pts[k].x =tmp; 

} 

} 

 

void main (int argc, char  **argv) 

{ 

wcPt2 pts[3]= { 50.0, 50.0, 150.0, 50.0, 100.0, 150.0}; 

wcPt2 refPt ={100.0. 100.0}; 

long windowID = openGraphics (*argv,200, 350); 

setbackground (WHITE) ; 

setcolor (BLUE); 

pFillArea(3, pts): 

matrix3x3SetIdentity(theMatrix); 

scale2 (0.5, 0.5, refPt): 

rotate2 (90.0, refPt); 

translate2 (0, 150); 

transformpoints2 ( 3 , pts) 

pFillArea(3.pts); 

sleep (10); 

closeGraphics (windowID); 

} 

Other Transformations 

1. Reflection 

2. Shear 

 

Reflection  

A reflection is a transformation that produces a mirror image of an object. The mirror 

image for a two-dimensional reflection is generated relative to an axis of reflection by 
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rotating the object 180
o
 about the reflection axis. We can choose an axis of reflection in 

the xy plane or perpendicular to the xy plane or coordinate origin 

 

Reflection of an object about the x axis 

 

 
 

Reflection the x axis is accomplished with the transformation matrix 
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Reflection of an object about the y axis  
 

 

Reflection the y axis is accomplished with the transformation matrix 
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Reflection of an object about the coordinate origin 
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Reflection about origin is accomplished with the transformation matrix 
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Reflection axis as the diagonal line y = x 

 

To obtain transformation matrix for reflection about diagonal y=x the transformation 

sequence is 

1. Clock wise rotation by 45
0
 

2. Reflection about x axis 

3. counter clock wise by  45
0
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Reflection about the diagonal line y=x is accomplished with the transformation 

matrix 
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Reflection axis as the diagonal line y = -x 

 

To obtain transformation matrix for reflection about diagonal y=-x the transformation 

sequence is 

1. Clock wise rotation by 45
0
 

2. Reflection about y axis 

3. counter clock wise by  45
0
 

 

Reflection about the diagonal line y=-x is accomplished with the transformation 

matrix 
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Shear 

A Transformation that slants the shape of an object is called the shear transformation. 

Two common shearing transformations are used. One shifts x coordinate values and other 

shift y coordinate values.  However in both the cases only one coordinate (x or y) 

changes its coordinates and other preserves its values. 
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X- Shear 

The x shear preserves the y coordinates, but changes the x values which cause vertical 

lines to tilt right or left as shown in figure 

 

The Transformations matrix for x-shear is 
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which transforms the coordinates as 

x’ =x+ xsh .y 

y’ = y 

Y Shear 

The y shear preserves the x coordinates, but changes the y values which cause horizontal 

lines which slope up or down 

The Transformations matrix for y-shear is 
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which transforms the coordinates as 

x’ =x 

y’ = y+ ysh .x 
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XY-Shear 

The transformation matrix for xy-shear 

 

 

 

which transforms the coordinates as 

x’ =x+ xsh .y 

y’ = y+ ysh .x 

Shearing Relative to other reference line 

We can apply x shear and y shear transformations relative to other reference lines. In x 

shear transformations we can use y reference line and in y shear we can use x reference 

line. 

X shear with y reference line  

We can generate x-direction shears relative to other reference lines with the 

transformation matrix 
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which transforms the coordinates as 

x’ =x+ xsh (y- refy ) 

y’ = y  

Example 

Shx = ½    and yref=-1 
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Y shear with x reference line  

We can generate y-direction shears relative to other reference lines with the 

transformation matrix 
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which transforms the coordinates as 

x’ =x 

y’ = shy (x- xref) + y 

Example 

Shy = ½    and xref=-1 
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Two dimensional viewing 

The viewing pipeline 

A world coordinate area selected for display is called a window. An area on a display 

device to which a window is mapped is called a view port. The window defines what is to 

be viewed the view port defines where it is to be displayed.  

The mapping of a part of a world coordinate scene to device coordinate is referred to as 

viewing transformation. The two dimensional viewing transformation is referred to as 

window to view port transformation of windowing transformation. 

A viewing transformation using standard rectangles for the window and viewport 

  

The two dimensional viewing transformation pipeline 

 

 The viewing transformation in several steps, as indicated in Fig.  First, we 

construct the scene in world coordinates using the output primitives. Next to obtain a 

particular orientation for the window, we can set up a two-dimensional viewing-

coordinate system in the world coordinate plane, and define a window in the viewing-

coordinate system.  

The viewing- coordinate reference frame is used to provide a method for setting up 

arbitrary orientations for rectangular windows. Once the viewing reference frame is 

established, we can transform descriptions in world coordinates to viewing coordinates. 

We then define a viewport in normalized coordinates (in the range from 0 to 1) and map 

the viewing-coordinate description of the scene to normalized coordinates. 
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 At the final step all parts of the picture that lie outside the viewport are clipped, and the 

contents of the viewport are transferred to device coordinates. By changing the position 

of the viewport, we can view objects at different positions on the display area of an 

output device.  

 

Window to view port coordinate transformation: 

 

 

A point at position (xw,yw) in a designated window is mapped to viewport coordinates 

(xv,yv) so that relative positions in the two areas are the same. The figure illustrates the 

window  to view port mapping. 

A point at position (xw,yw) in the window is mapped into position (xv,yv) in the associated 

view port. To maintain the same relative placement in view port as in window 
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solving these expressions for  view port position (xv,yv) 

    

 

 

where scaling factors are 

 sx  =  xvmax – xvmin    sy  =    yvmax - yvmin 

           xwmax – xwmin                ywmax - ywmin 

The conversion is performed with the following sequence of transformations. 

1. Perform a scaling transformation using  point position of (xw min, yw min) that 

scales the window area to the size of view port. 

2. Translate the scaled window area to the position of view port. Relative 

proportions of  objects are maintained if scaling factor are the same(Sx=Sy). 

 

Otherwise world objects will be stretched or contracted in either the x or y direction when 

displayed on output device. For normalized coordinates, object descriptions are mapped 

to various display devices.  

 Any number of output devices can be open in particular application and another 

window view port transformation can be performed for each open output device. This 

mapping called the work station transformation is accomplished by selecting a window 

area in normalized apace and a view port are in coordinates of display device. 

Mapping selected parts of a scene in normalized coordinate to different video 

monitors with work station transformation. 
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Two Dimensional viewing functions 

Viewing reference system in a PHIGS application program has following function. 

 evaluateViewOrientationMatrix(x0,y0,xv,yv,error, viewMatrix) 

where x0,y0  are coordinate of viewing origin and parameter xv, yv  are the world 

coordinate positions for view up vector.An integer error code is generated if the input 

parameters are in error otherwise the view matrix for world-to-viewing transformation is 

calculated. Any number of viewing transformation matrices can be defined in an 

application.  

To set up elements of window to view port mapping 

 
evaluateViewMappingMatrix (xwmin, xwmax, ywmin, ywmax, xvmin, xvmax, yvmin, 

yvmax, error, viewMappingMatrix) 
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Here window limits in viewing coordinates are chosen with parameters xwmin, xwmax, 

ywmin, ywmax and the viewport limits are set with normalized coordinate positions 

xvmin, xvmax, yvmin, yvmax.  

The combinations of viewing and window view port mapping for various workstations in 

a viewing table with 

setViewRepresentation(ws,viewIndex,viewMatrix,viewMappingMatrix, 

xclipmin,  xclipmax, yclipmin, yclipmax, clipxy) 

Where parameter ws designates the output device and parameter view index sets an 

integer identifier for this window-view port point. The matrices viewMatrix and 

viewMappingMatrix can be concatenated and referenced by viewIndex. 

 setViewIndex(viewIndex) 

selects a particular set of options from the viewing table.  

At the final stage we apply a workstation transformation  by selecting a work station 

window viewport pair. 

setWorkstationWindow (ws, xwsWindmin, xwsWindmax,  

ywsWindmin, ywsWindmax) 

 

setWorkstationViewport (ws, xwsVPortmin, xwsVPortmax,  

      ywsVPortmin, ywsVPortmax) 

 

where was gives the workstation number. Window-coordinate extents are specified in the 

range from 0 to 1 and viewport limits are in integer device coordinates. 

Clipping operation 

Any procedure that identifies those portions of a picture that are inside or outside of a 

specified region of space is referred to as clipping algorithm or clipping. The region 

against which an object is to be clipped is called clip window. 

Algorithm for clipping primitive types: 

 Point clipping 

 Line clipping (Straight-line segment) 

 Area clipping 

 Curve clipping 

 Text clipping 
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Line and polygon clipping routines are standard components of graphics packages. 

Point Clipping 

Clip window is a rectangle in standard position. A point P=(x,y) for display, if following 

inequalities are satisfied: 

  xwmin  <= x <= xwmax 

  ywmin  <= y <= ywmax 

where the edges of the clip window (xwmin,xwmax,ywmin,ywmax) can be either the 

world-coordinate window boundaries or viewport boundaries. If any one of these four 

inequalities is not satisfied, the point is clipped (not saved for display). 

Line Clipping 

A line clipping procedure involves several parts. First we test a given line segment 

whether it lies completely inside the clipping window. If it does not we try to determine 

whether it lies completely outside the window . Finally if we can not identify a line as 

completely inside or completely outside, we perform intersection calculations with one or 

more clipping boundaries. 

Process lines through “inside-outside” tests by checking the line endpoints. A line with 

both endpoints inside all clipping boundaries such as line from P1 to P2 is saved. A line 

with both end point outside any one of the clip boundaries line P3P4  is outside the 

window. 

Line clipping against a rectangular clip window 
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All other lines cross one or more clipping boundaries. For a line segment with end points 

(x1,y1) and (x2,y2) one or both end  points outside clipping rectangle, the parametric 

representation  

   

 

 

could be used to determine values of  u for an intersection with the clipping boundary 

coordinates. If the value of u for an intersection with a rectangle boundary edge is outside 

the range of  0 to 1, the line does not enter the interior of  the window at that boundary. If  

the value of u is within the range from 0 to 1, the line segment does indeed cross into the 

clipping area. This method can be applied to each clipping boundary edge in to 

determined whether any part of line segment is to displayed. 

Cohen-Sutherland Line Clipping 

 This is one of the oldest and most popular line-clipping procedures. The method 

speeds up the processing of line segments by performing initial tests that reduce the 

number of intersections that must be calculated. 

 Every line endpoint in a picture is assigned a four digit binary code called a region 

code that identifies the location of the point relative to the boundaries of the clipping 

rectangle.  

 

Binary region codes assigned to line end points according to relative position with 

respect to the clipping rectangle. 

 

  10121

121





u,yyu+y=y

,xxu+x=x
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Regions are set up in reference to the boundaries. Each bit position in region code is used 

to indicate one of four relative coordinate positions of points with respect to clip window: 

to the left, right, top or bottom. By numbering the bit positions in the region code as 1 

through 4 from right to left, the coordinate regions are corrected with bit positions as 

  bit 1:   left 

  bit 2:   right 

  bit 3:   below 

  bit4:    above 

 A value of 1 in any bit position indicates that the point is in that relative position. 

Otherwise the bit position is set to 0. If a point is within the clipping rectangle the region 

code is 0000. A point that is below and to the left of the rectangle has a region code of 

0101.  

Bit values in the region code are determined by comparing endpoint coordinate 

values (x,y) to clip boundaries.   Bit1 is set to 1 if x <xwmin. 

 For programming language in which bit manipulation is possible region-code bit 

values can be determined with following two steps. 

 (1) Calculate differences between endpoint coordinates and clipping boundaries.  

(2) Use the resultant sign bit of each difference calculation to set the corresponding value 

in the region code.  

bit 1 is the sign bit of x – xwmin  

bit 2 is the sign bit of xwmax - x 

bit 3 is the sign bit of y – ywmin  

bit 4 is the sign bit of ywmax - y. 

Once we have established region codes for all line endpoints, we can quickly determine 

which lines are completely inside the clip window and which are clearly outside. 

 Any lines that are completely contained within the window boundaries have a 

region code of 0000 for both endpoints, and we accept 
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these lines. Any lines that have a 1 in the same bit position in the region codes for each 

endpoint are completely outside the clipping rectangle, and we  reject these lines.  

We would discard the line that has a region code of 1001 for one endpoint and a 

code of 0101 for the other endpoint. Both endpoints of this line are left of the clipping 

rectangle, as indicated by the 1 in the first bit position of each region code. 

 A method that can be used to test lines for total clipping is to perform the logical 

and operation with both region codes. If the result is not 0000,the line is completely 

outside the clipping region. 

 Lines that cannot be identified as completely inside or completely outside a clip 

window by these tests are checked for intersection with window boundaries. 

 

Line extending from one coordinates region to another may pass through the clip 

window, or they may intersect clipping boundaries without entering window. 

Cohen-Sutherland line clipping starting with bottom endpoint left, right , bottom 

and top boundaries in turn and find that this point is below the clipping rectangle. 

Starting with the bottom endpoint of the line from P1 to P2, we check P1 against 

the left, right, and bottom boundaries in turn and find that this point is below the clipping 

rectangle. We then find the intersection point P1’ with the bottom boundary and discard 

the line section from P1  to P1’.   

The line now has been reduced to the section from P1’ to P2,Since P2, is outside the 

clip window, we check this endpoint against the boundaries and find that it is to the left 
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of the window. Intersection point P2’ is calculated, but this point is above the window. So 

the final intersection calculation yields P2”, and the line from P1’ to P2”is saved. This 

completes processing for this line, so we save this part and go on to the next line. 

Point P3 in the next line is to the left of the clipping rectangle, so we determine the 

intersection P3’, and eliminate the line section from P3 to P3'. By checking region codes 

for the line section from P3'to P4 we find that the remainder of the line is below the clip 

window and can be discarded also. 

Intersection points with a clipping boundary can be calculated using the slope-

intercept form of the line equation. For a line with endpoint coordinates (x1,y1) and (x2,y2) 

and the y coordinate of the intersection point with a vertical boundary can be obtained 

with the calculation. 

   y =y1 +m (x-x1) 

where x value is set either to xwmin or to xwmax and slope of line is calculated as  

   m = (y2- y1) / (x2- x1) 

the intersection with a horizontal boundary the x coordinate can be calculated as 

    x= x1 +( y- y1) / m 

with y set to either to ywmin or to ywmax. 

Implementation of Cohen-sutherland Line Clipping 

#define Round(a) ((int)(a+0.5)) 

 

#define LEFT_EDGE  0x1 

#define RIGHT_EDGE  0x2 

#define BOTTOM_EDGE  0x4 

#define TOP_EDGE  0x8 

#define TRUE 1 

#define FALSE 0 

 

#define INSIDE(a) (!a) 

#define REJECT(a,b) (a&b) 

#define ACCEPT(a,b) (!(a|b)) 

 

unsigned char encode(wcPt2 pt, dcPt winmin, dcPt winmax) 

{ 
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unsigned char code=0x00; 

if(pt.x<winmin.x) 

code=code|LEFT_EDGE; 

if(pt.x>winmax.x) 

code=code|RIGHT_EDGE; 

if(pt.y<winmin.y) 

code=code|BOTTOM_EDGE; 

if(pt.y>winmax.y) 

code=code|TOP_EDGE; 

return(code); 

} 

void swappts(wcPt2 *p1,wcPt2 *p2) 

{ 

wcPt2 temp; 

tmp=*p1; 

*p1=*p2; 

*p2=tmp; 

} 

void swapcodes(unsigned char *c1,unsigned char *c2) 

{ 

unsigned char tmp; 

tmp=*c1; 

*c1=*c2; 

*c2=tmp; 

} 

void clipline(dcPt winmin, dcPt winmax, wcPt2 p1,ecPt2 point p2) 

{ 

unsigned char code1,code2; 

int done=FALSE, draw=FALSE; 

float m; 

while(!done) 

{ 

code1=encode(p1,winmin,winmax); 

code2=encode(p2,winmin,winmax); 

if(ACCEPT(code1,code2)) 

{ 

done=TRUE; 

draw=TRUE; 

} 

else if(REJECT(code1,code2)) 

done=TRUE; 

else 

{ 
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if(INSIDE(code1)) 

{ 

swappts(&p1,&p2); 

swapcodes(&code1,&code2); 

} 

if(p2.x!=p1.x) 

m=(p2.y-p1.y)/(p2.x-p1.x); 

if(code1 &LEFT_EDGE) 

{ 

p1.y+=(winmin.x-p1.x)*m; 

p1.x=winmin.x; 

} 

else if(code1 &RIGHT_EDGE) 

{ 

p1.y+=(winmax.x-p1.x)*m; 

p1.x=winmax.x; 

} 

else if(code1 &BOTTOM_EDGE) 

{ 

if(p2.x!=p1.x) 

p1.x+=(winmin.y-p1.y)/m; 

p1.y=winmin.y; 

} 

else if(code1 &TOP_EDGE) 

{ 

if(p2.x!=p1.x) 

p1.x+=(winmax.y-p1.y)/m; 

p1.y=winmax.y; 

} 

} 

} 

if(draw) 

lineDDA(ROUND(p1.x),ROUND(p1.y),ROUND(p2.x),ROUND(p2.y)); 

} 

 

Liang – Barsky line Clipping: 

 Based on analysis of parametric equation of a line segment, faster line clippers 

have been developed, which can be written in the form : 

  x = x1 + u ∆x 

  y = y1 + u ∆y  0<=u<=1       
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where ∆x = (x2 - x1) and ∆y = (y2 - y1)  

 In the Liang-Barsky approach we first  the point clipping condition in parametric 

form : 

  xwmin <= x1 + u ∆x <=. xwmax 

  ywmin <= y1 + u ∆y <= ywmax 

 Each of these four inequalities can be expressed as  

  µpk <= qk.  k=1,2,3,4 

 the parameters p & q are defined as 

   p1 = -∆x  q1 = x1 - xwmin 

              p2 =  ∆x  q2 = xwmax - x1 

   P3 = -∆y  q3 = y1- ywmin    

P4 = ∆y  q4 = ywmax - y1  

 

 Any line that is parallel to one of the  clipping boundaries have pk=0 for values of 

k corresponding to boundary k=1,2,3,4 correspond to left, right, bottom and top 

boundaries. For values of k, find qk<0, the line is completely out side the boundary. 

 

 If qk >=0, the line is inside the parallel clipping boundary. 

 

 When pk<0 the infinite extension of line proceeds from outside to inside of the 

infinite extension of this clipping boundary. 

 If  pk>0, the line proceeds from inside to outside, for non zero value of pk calculate 

the value of u, that corresponds to the point where the infinitely extended line intersect 

the extension of boundary k as 

u = qk / pk 

 For each line, calculate values for parameters u1and u2 that define the part of line 

that lies within the clip rectangle. The value of u1  is determined by looking at the 

rectangle edges for which the line proceeds from outside to the inside (p<0). 

 For these edges  we calculate 

rk = qk / pk 
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The value of u1 is taken as largest of set consisting of 0 and various values of r. The 

value of u2 is determined by examining the boundaries for which lines proceeds from 

inside to outside (P>0). 

 A value of rkis calculated for each of these boundaries and value of u2 is the  

minimum of  the set consisting of 1 and the calculated r values. 

 If u1>u2, the line is completely outside the clip window and it can be rejected. 

 Line intersection parameters are initialized to values u1=0 and u2=1. for each 

clipping boundary, the appropriate values for P and q are calculated and used by function 

Cliptest to determine whether the line can be rejected or whether the intersection 

parameter can be adjusted. 

 When p<0, the parameter r is used to update u1. 

 When p>0, the parameter r is used to update u2. 

If updating u1 or u2 results in u1>u2 reject the line, when p=0 and q<0, discard the line, 

it is parallel to and outside the boundary.If the line has not been rejected after all four 

value of p and q have been tested , the end points of clipped lines are determined from 

values of u1 and u2. 

 The Liang-Barsky algorithm is more efficient than the Cohen-Sutherland 

algorithm since intersections calculations are reduced. Each update of parameters u1 and 

u2 require only one division and window intersections of these lines are computed only 

once. 

Cohen-Sutherland algorithm, can repeatedly calculate intersections along a line 

path, even through line may be completely outside the clip window. Each intersection 

calculations require both a division and a multiplication. 

 

Implementation of Liang-Barsky Line Clipping 

 

#define Round(a) ((int)(a+0.5)) 

int clipTest (float p, float q, gfloat *u1, float *u2) 

{ 

float r; 

int retval=TRUE; 

if (p<0.0) 

{ 
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r=q/p 

 if (r>*u2) 

 retVal=FALSE; 

 else 

if (r>*u1) 

 *u1=r; 

} 

else 

if (p>0.0) 

{ 

r=q/p 

if (r<*u1) 

retVal=FALSE; 

else 

if (r<*u2) 

*u2=r; 

} 

else 

if )q<0.0) 

retVal=FALSE 

return(retVal); 

 

void clipLine (dcPt winMin, dcPt winMax, wcPt2 p1, wcpt2 p2) 

{ 

float u1=0.0, u2=1.0, dx=p2.x-p1.x,dy; 

if (clipTest (-dx, p1.x-winMin.x, &u1, &u2)) 

if (clipTest (dx, winMax.x-p1.x, &u1, &u2)) 

{ 

dy=p2.y-p1.y; 

if (clipTest (-dy, p1.y-winMin.y, &u1, &u2)) 

if (clipTest (dy, winMax.y-p1.y, &u1, &u2)) 

{ 

if (u1<1.0) 

{ 

p2.x=p1.x+u2*dx; 

p2.y=p1.y+u2*dy; 

} 

if (u1>0.0) 

{ 

p1.x=p1.x+u1*dx; 

p1.y=p1.y+u1*dy; 

} 

lineDDA(ROUND(p1.x),ROUND(p1.y),ROUND(p2.x),ROUND(p2.y)); 
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} 

} 

} 

 

Nicholl-Lee-Nicholl Line clipping 

By creating more regions around the clip window, the Nicholl-Lee-Nicholl (or NLN) 

algorithm avoids multiple clipping of an individual line segment. In the Cohen-

Sutherland method,  multiple intersections may be calculated.These extra intersection 

calculations are eliminated in the NLN algorithm by carrying out more region testing 

before intersection positions are calculated.  

Compared to both the Cohen-Sutherland and the Liang-Barsky algorithms, the 

Nicholl-Lee-Nicholl algorithm performs fewer comparisons and divisions. The trade-off 

is that the NLN algorithm can only be applied to two-dimensional dipping, whereas both 

the Liang-Barsky and the Cohen-Sutherland methods are easily extended to three-

dimensional scenes. 

For a line with endpoints P1 and P2 we first determine the position of point P1,  

for the nine possible regions relative to the clipping rectangle. Only the three regions 

shown in Fig. need to be considered. If P1 lies in any one of the other six regions, we can 

move it to one of the three regions in Fig.  using a symmetry transformation. For 

example, the region directly above the clip window can be transformed to the region left 

of the clip window using a reflection about the line y = -x, or we could use a 90 degree 

counterclockwise rotation. 

Three possible positions for a line endpoint p1(a) in the NLN algorithm 
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Case 1: p1 inside region 

Case 2: p1 across edge 

Case 3: p1 across corner 

Next, we determine the position of P2 relative to P1. To do this, we create some new 

regions in the plane, depending on the location of P1. Boundaries of the new regions are 

half-infinite line segments that start at the position of P1 and pass through the window 

corners. If  P1 is inside the clip window and P2 is outside, we set up the four regions 

shown in Fig 

 

The four clipping regions used in  NLN alg when p1 is inside and p2 outside the clip 

window 

 

 

 

 

  

The intersection with the appropriate window boundary is then carried out, 

depending on which one of the four regions (L, T, R, or B) contains P2. If both P1 and P2 

are inside the clipping rectangle, we simply save the entire line. 

If  P1 is in the region to the left of the window, we set up the four regions, L, LT, LR, and 

LB, shown in Fig. 
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These four regions determine a unique boundary for the line segment. For instance, if P2 

is in region L, we clip the line at the left boundary and save the line segment from this 

intersection point to P2. But if P2 is in region LT, we save the line segment from the left 

window boundary to the top boundary. If P2 is not in any of the four regions, L, LT, LR, 

or LB, the entire line is clipped. 

For the third case, when P1 is to the left and above the clip window, we usethe clipping 

regions in Fig.  

Fig : The two possible sets of clipping regions used in NLN algorithm when P1 is 

above and to the left of the clip window 

 

In this case, we have the two possibilities shown, depending on the position of P1, 

relative to the top left corner of the window. If P2, is in one of the regions T, L, TR, TB, 

LR, or LB, this determines a unique clip window edge for the intersection calculations. 

Otherwise, the entire line is rejected. 

To determine the region in which P2 is located, we compare the slope of the 
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line to the slopes of the boundaries of the clip regions. For example, if P1 is left of 

the clipping  rectangle (Fig. a), then P2, is in region LT if 

slopeP1PTR<slopeP1P2<slopeP1PTL 

     or 

yT – y1   < y2 – y1 < yT – y1 

    xR – x1     x2 – x1      xL – x1       

 And we clip the entire line if 

 (yT – y1)( x2 – x1) < (xL – x1 ) ( y2 – y1) 

The coordinate difference and product calculations used in the slope tests are 

saved and also used in the intersection calculations. From the parametric equations 

 x = x1 + (x2 – x1)u 

 y = y1 + (y2 – y1)u 

an x-intersection position on the left window boundary is x = xL,, with  

u= (xL – x1 )/ (  x2 – x1)  so  that the y-intersection position is 

 y = y1 + y2 – y1    (xL – x1 ) 

    x2 – x1 

And an intersection position on the top boundary has y = yT and u = (yT – y1)/ (y2 – y1) 

with 

  x = x1 + x2 – x1    (yT – y1 ) 

                y2 – y1 

POLYGON CLIPPING 

To clip polygons, we need to modify the line-clipping procedures. A polygon 

boundary processed with a line clipper may be displayed as a series of unconnected line 

segments (Fig.), depending on the orientation of the polygon to the clipping window. 
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Display of a polygon processed by a line clipping algorithm 

   

For polygon clipping, we require an algorithm that will generate one or more closed areas 

that are then scan converted for the appropriate area fill. The output of a polygon clipper 

should be a sequence of vertices that defines the clipped polygon boundaries. 

 

Sutherland – Hodgeman  polygon clipping: 

 A polygon can be clipped by processing the polygon boundary as a whole against 

each window edge. This could be accomplished by processing all polygon vertices 

against each clip rectangle boundary. 

 There are four possible cases when processing vertices in sequence around the 

perimeter of a polygon. As each point of adjacent polygon vertices is passed to a window 

boundary clipper, make the following tests: 

1. If the first vertex is outside the window boundary and second vertex is inside, 

both the intersection point of the polygon edge with window boundary and 

second vertex are added to output vertex list. 

2. If both input vertices are inside the window boundary, only the second vertex 

is added to the output vertex list. 
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3. If  first vertex is inside the window boundary and second vertex is outside only 

the edge intersection with window boundary is added to output vertex list. 

4. If  both input vertices are outside the window boundary nothing is added to the 

output list. 

Clipping a polygon against successive window boundaries. 

 

Successive processing of pairs of polygon vertices against the left window boundary 

 

Clipping a polygon against the left boundary of  a window, starting with vertex 1. 

Primed numbers are used to label the points in the output vertex list for this window 

boundary. 
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vertices 1 and 2 are found to be on outside of boundary. Moving along vertex 3 which is 

inside, calculate the intersection and save both the intersection point and vertex 3. Vertex 

4 and 5 are determined to be inside and are saved. Vertex 6 is outside so we find and save 

the intersection point. Using the five saved points we repeat the process for next window 

boundary. 

Implementing the algorithm as described requires setting up storage for an output list of 

vertices as a polygon clipped against each window boundary. We eliminate the 

intermediate output vertex lists by simply by clipping individual vertices at each step and 

passing the clipped vertices on to the next boundary clipper. 

A point is added to the output vertex list only after it has been determined to be inside or 

on a window boundary by all boundary clippers. Otherwise the point does not continue in 

the pipeline. 

A polygon overlapping a rectangular clip window 

 

  

Processing the vertices of the polygon in the above fig. through a boundary clipping 

pipeline. After all vertices are processed through the pipeline, the vertex list is  { 

v2”, v2’, v3,v3’} 
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Implementation of Sutherland-Hodgeman Polygon Clipping 

typedef enum { Left,Right,Bottom,Top } Edge; 

#define N_EDGE 4 

#define TRUE 1 

#define FALSE 0 

 

int inside(wcPt2 p, Edge b,dcPt wmin,dcPt wmax) 

{ 

switch(b) 

{ 

case Left: if(p.x<wmin.x) return (FALSE); break; 

case Right:if(p.x>wmax.x) return (FALSE); break; 

case bottom:if(p.y<wmin.y) return (FALSE); break; 

case top: if(p.y>wmax.y) return (FALSE); break; 

} 

return (TRUE); 

} 

int cross(wcPt2 p1, wcPt2 p2,Edge b,dcPt wmin,dcPt wmax) 

{ 

if(inside(p1,b,wmin,wmax)==inside(p2,b,wmin,wmax)) 

return (FALSE); 

else 

return (TRUE); 

}  

wcPt2 (wcPt2 p1, wcPt2 p2,int b,dcPt wmin,dcPt wmax ) 

{ 

wcPt2 iPt; 

float m; 

if(p1.x!=p2.x) 

m=(p1.y-p2.y)/(p1.x-p2.x); 

switch(b) 

{ 

case Left: 

ipt.x=wmin.x; 
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ipt.y=p2.y+(wmin.x-p2.x)*m; 

break; 

case Right: 

ipt.x=wmax.x; 

ipt.y=p2.y+(wmax.x-p2.x)*m; 

break; 

case Bottom: 

ipt.y=wmin.y; 

if(p1.x!=p2.x) 

ipt.x=p2.x+(wmin.y-p2.y)/m; 

else 

ipt.x=p2.x; 

break; 

case Top: 

ipt.y=wmax.y; 

if(p1.x!=p2.x) 

ipt.x=p2.x+(wmax.y-p2.y)/m; 

else 

ipt.x=p2.x; 

break; 

} 

return(ipt); 

} 

void clippoint(wcPt2 p,Edge b,dcPt wmin,dcPt wmax, wcPt2 *pout,int *cnt, wcPt2 

*first[],struct point *s) 

{ 

wcPt2 iPt; 

if(!first[b]) 

first[b]=&p; 

else 

if(cross(p,s[b],b,wmin,wmax)) 

{ 

ipt=intersect(p,s[b],b,wmin,wmax); 

if(b<top) 

clippoint(ipt,b+1,wmin,wmax,pout,cnt,first,s); 

else 

{ 

pout[*cnt]=ipt; 

(*cnt)++; 

} 

} 

s[b]=p; 

if(inside(p,b,wmin,wmax)) 
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if(b<top) 

clippoint(p,b+1,wmin,wmax,pout,cnt,first,s); 

else 

{ 

pout[*cnt]=p; 

(*cnt)++; 

} 

} 

void closeclip(dcPt wmin,dcPt wmax, wcPt2  *pout,int *cnt,wcPt2 *first[], wcPt2 *s) 

{ 

wcPt2 iPt; 

Edge b; 

for(b=left;b<=top;b++) 

{ 

if(cross(s[b],*first[b],b,wmin,wmax)) 

{ 

i=intersect(s[b],*first[b],b,wmin,wmax); 

if(b<top) 

clippoint(i,b+1,wmin,wmax,pout,cnt,first,s); 

else 

{ 

pout[*cnt]=i; 

(*cnt)++; 

} 

} 

} 

} 

int clippolygon(dcPt point wmin,dcPt wmax,int n,wcPt2 *pin, wcPt2 *pout) 

{ 

wcPt2 *first[N_EDGE]={0,0,0,0},s[N_EDGE]; 

int i,cnt=0; 

for(i=0;i<n;i++) 

clippoint(pin[i],left,wmin,wmax,pout,&cnt,first,s); 

closeclip(wmin,wmax,pout,&cnt,first,s); 

return(cnt); 

} 

 

Weiler- Atherton Polygon Clipping  

  This clipping procedure was developed as a method for identifying visible 

surfaces, and so it can be applied with arbitrary polygon-clipping regions. 
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The basic idea in this algorithm is that instead of always proceeding around the 

polygon edges as vertices are processed, we sometimes want to follow the window 

boundaries. Which path we follow depends on the polygon-processing direction 

(clockwise or counterclockwise) and whether the pair of polygon vertices currently being 

processed represents an outside-to-inside pair or an inside- to-outside pair. For clockwise 

processing of polygon vertices, we use the following rules: 

 For an outside-to-inside pair of vertices, follow the polygon boundary. 

 For an inside-to-outside pair of vertices,. follow the window boundary in a 

clockwise direction. 

In the below Fig. the processing direction in the Weiler-Atherton algorithm and the 

resulting clipped polygon is shown for a rectangular clipping window. 

  

An improvement on the Weiler-Atherton algorithm is the Weiler algorithm, 

which applies constructive solid geometry ideas to clip an arbitrary polygon 

against any polygon clipping region.  

 

Curve Clipping 

 

 Curve-clipping procedures will involve nonlinear equations,  and this requires 

more processing than for objects with linear boundaries. The bounding rectangle for a 

circle or other curved object can be used first to test for overlap with a rectangular clip 

window.  

If the bounding rectangle for the object is completely inside the window, we save 

the object. If the rectangle is determined to be completely outside the window, we discard 

the object. In either case, there is no further computation necessary.  

 

But if the bounding rectangle test fails, we can look for other computation-saving 

approaches. For a circle, we can use the coordinate extents of individual quadrants and 

then octants for preliminary testing before calculating curve-window intersections.  

 

The below figure illustrates circle clipping against a rectangular window. On the 

first pass, we can clip the bounding rectangle of the object against the bounding rectangle 
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of the clip region. If the two regions overlap, we will need to solve the simultaneous line-

curve equations to obtain the clipping intersection points. 

 

Clipping a filled circle 

 

 

 

 

 

 

 

 

 

 

Text clipping 

 

 There are several techniques that can be used to provide text clipping in a graphics 

package. The clipping technique used will depend on the methods used to 

generate characters and the requirements of a particular application. 

 

The simplest method for processing character strings relative to a window 

boundary is to use the all-or-none string-clipping strategy shown in Fig. . If all of the 

string is inside a clip window, we keep it. Otherwise, the string is discarded. This 

procedure is implemented by considering a bounding rectangle around the text pattern. 

The boundary positions of the rectangle are then compared to the window boundaries, 

and the string is rejected if there is any overlap. This method produces the fastest text 

clipping. 

 

Text clipping using a bounding rectangle about the entire string 

      

 

 

 

 

 

 

 

 

An alternative to rejecting an entire character string that overlaps a window 

boundary is to use the all-or-none character-clipping strategy. Here we discard only 

those characters that are not completely inside the window .In this case, the boundary 

limits of individual characters are compared to the window. Any character that either 

overlaps or is outside a window boundary is clipped. 
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 Text clipping using a bounding rectangle about individual characters. 

 

              
 A final method for handling text clipping is to clip the components of individual 

characters. We now treat characters in much the same way that we treated lines. If an 

individual character overlaps a clip window boundary, we clip off the parts of the 

character that are outside the window.  

 

Text Clipping performed on the components of individual characters 

 

           

 

Exterior clipping: 

 

 Procedure for clipping a picture to the interior of a region by eliminating 

everything outside  the clipping region. By these procedures the inside region of the 

picture is saved. To clip a picture to the exterior of a specified region. The picture parts to 

be saved are those that are outside the region. This is called as exterior clipping. 

 

Objects within a window are clipped to interior of window when other higher 

priority window overlap these objects. The objects are also clipped to the exterior of 

overlapping windows.  

 

 



Unit II – Computer Graphics 

1 

 

 

 
 
 

UNIT - II THREE-DIMENSIONAL CONCEPTS 
Parallel and Perspective projections-Three-Dimensional Object 

Representations – Polygons, Curved lines,Splines, Quadric Surfaces- 
Visualization of data sets- Three- Transformations – Three- Dimensional 
Viewing –Visible surface identification. 

 
 

2.1 Three Dimensional Concepts 
 

 
 

2.1.1 Three Dimensional Display Methods: 
 

 
 

   To obtain a display of a three dimensional scene that has been 
modeled in world coordinates, we must setup a co-ordinate 

reference for the ‘camera’. 
 

   This coordinate reference defines the position and orientation for 

the plane of the camera film which is the plane we want to use to 
display a view of the objects in the scene. 

 

   Object descriptions are then transferred to the camera reference 
coordinates and projected onto the selected display plane. 

 

   The objects can be displayed in wire frame form, or we can apply 
lighting and surface rendering techniques to shade the visible 

surfaces. 
 

Parallel Projection: 
 

   Parallel projection is a method for generating a view of a solid 
object is to project points on the object surface along parallel lines 

onto the display plane. 
 

   In parallel projection, parallel lines in the world coordinate scene 
project into parallel lines on the two dimensional display planes. 

 

   This technique is used in engineering and architectural drawings 
to represent an object with a set of views that maintain relative 
proportions of the object. 

 

   The appearance of the solid object can be reconstructed from the 
major views.
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Fig. Three parallel projection views of an object, showing 

relative proportions from different viewing positions. 

 
 

 
 

Perspective Projection: 
 

   It is a method for generating a view of a three dimensional scene is 
to project points to the display plane alone converging paths. 

 

   This makes objects further from the viewing position be displayed 
smaller than objects of the same size that are nearer to the viewing 

position. 
 

   In a perspective projection, parallel lines in a scene that are not 

parallel to the display plane are projected into converging lines. 
 

   Scenes  displayed  using  perspective  projections  appear  more 

realistic, since this is the way that our eyes and a camera lens 
form images. 

 

Depth Cueing: 
 

   Depth information is important to identify the viewing direction, 

which is the front and which is the back of displayed object. 
 

   Depth cueing is a method for indicating depth with wire frame 

displays is to vary the intensity of objects according to their 
distance from the viewing position. 

 

   Depth  cueing  is  applied  by  choosing  maximum  and  minimum 

intensity (or color) values and a range of distance over which the 
intensities are to vary. 

 

Visible line and surface identification: 
 

   A simplest way to identify the visible line is to highlight the visible 

lines or to display them in a different color. 
 

   Another method is to display the non visible lines as dashed lines. 
 

Surface Rendering: 
 

   Surface rendering method is used to generate a degree of realism 
in a displayed scene.
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   Realism is attained in displays by setting the surface intensity of 
objects  according  to  the  lighting  conditions  in  the  scene  and 
surface characteristics. 

 

   Lighting  conditions  include  the  intensity  and  positions  of  light 

sources and the background illumination. 
 

   Surface characteristics include degree of transparency and how 

rough or smooth the surfaces are to be. 
 

Exploded and Cutaway views: 
 

   Exploded and cutaway views of objects can be to show the internal 
structure and relationship of the objects parts. 

 

   An alternative to exploding an object into its component parts is 
the cut away view which removes part of the visible surfaces to 

show internal structure. 
 

Three-dimensional and Stereoscopic Views: 
 

   In Stereoscopic views, three dimensional views can be obtained by 
reflecting a raster image from a vibrating flexible mirror. 

 

   The vibrations of the mirror are synchronized with the display of 
the scene on the CRT. 

 

   As the mirror vibrates, the focal length varies so that each point in 

the scene is projected to a position corresponding to its depth. 
 

   Stereoscopic devices present two views of a scene; one for the left 
eye and the other for the right eye. 

 

   The two views are generated by selecting viewing positions that 
corresponds to the two eye positions of a single viewer. 

 

   These two views can be displayed on alternate refresh cycles of a 

raster monitor, and viewed through glasses that alternately darken 
first one lens then the other in synchronization with the monitor 
refresh cycles. 

 

2.1.2 Three Dimensional Graphics Packages 
 

   The  3D  package  must  include  methods  for  mapping  scene 
descriptions onto a flat viewing surface. 

 

   There  should  be  some  consideration  on  how  surfaces  of  solid 

objects are to be modeled, how visible surfaces can be identified, 
how transformations of objects are preformed in space, and how to 
describe the additional spatial properties. 

 

   World coordinate descriptions are extended to 3D, and users are 
provided with   output   and   input   routines   accessed   with 
specifications such as 

 

o Polyline3(n, WcPoints) 
 



Unit II – Computer Graphics 

4 

 

 

o Fillarea3(n, WcPoints)
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o Text3(WcPoint, string) 
 

o Getlocator3(WcPoint) 
 

o Translate3(translateVector, matrix Translate) 
 

Where  points  and  vectors  are  specified  with  3  components  and 
transformation matrices have 4 rows and 4 columns. 

 

2.2 Three Dimensional Object Representations 
 

Representation  schemes  for  solid  objects  are  divided  into  two 

categories as follows: 
 

1. Boundary Representation ( B-reps) 
 

It describes a three dimensional object as a set of surfaces that 

separate the object interior from the environment. Examples are 
polygon facets and spline patches. 

 

2. Space Partitioning representation 
 

It describes the interior properties, by partitioning the spatial 
region containing an object into a set of small, nonoverlapping, 
contiguous solids(usually cubes). 

 

Eg: Octree Representation 
 

2.2.1 Polygon Surfaces 
 

Polygon surfaces are boundary representations for a 3D graphics 
object is a set of polygons that enclose the object interior. 

 

Polygon Tables 
 

   The polygon surface is specified with a set of vertex coordinates 
and associated attribute parameters. 

 

   For each polygon input, the data are placed into tables that are to 
be used in the subsequent processing. 

 

   Polygon data tables can be organized into two groups: Geometric 
tables and attribute tables. 

 

Geometric Tables 
 

Contain vertex coordinates and parameters to identify the spatial 
orientation of the polygon surfaces. 

 

Attribute tables 
 

Contain attribute information for an object such as parameters 

specifying the degree of transparency of the object and its surface 
reflectivity and texture characteristics. 

 

A convenient organization for storing geometric data is to create three 
lists: 

 

1. The Vertex Table 
 

Coordinate values for each vertex in the object are stored in 

this table.
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2. The Edge Table 
 

It contains pointers back into the vertex table to identify the 

vertices for each polygon edge. 
 

3. The Polygon Table 
 

It contains pointers back into the edge table to identify the 
edges for each polygon. 

 

This is shown in fig 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vertex table Edge Table Polygon surface table 

V1 : X1, Y1, Z1 E1 : V1, V2 S1 : E1, E2, E3 

V2 : X2, Y2, Z2 E2 : V2, V3 S2 : E3, E4, E5, E6 

V3 : X3, Y3, Z3 E3 : V3, V1 
 

V4 : X4, Y4, Z4 E4 : V3, V4 
 

V5 : X5, Y5, Z5 E5 : V4, V5 
 

 E6 : V5, V1 
 

 
 

   Listing the geometric data in three tables provides a convenient 

reference to  the  individual  components  (vertices,  edges  and 
polygons) of each object. 

 

   The object can be displayed efficiently by using data from the edge 
table to draw the component lines. 

 

   Extra information can be added to the data tables for faster 
information extraction. For instance, edge table can be expanded
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to include forward points into the polygon table so that common 
edges between polygons can be identified more rapidly. 

 

E1 : V1, V2, S1 
 

E2 : V2, V3, S1 
 

E3 : V3, V1, S1, S2 
 

E4 : V3, V4, S2 
 

E5 : V4, V5, S2 
 

E6 : V5, V1, S2 
 

   This is useful for the rendering procedure that must vary surface 

shading smoothly across the edges from one polygon to the next. 
Similarly, the vertex table can be expanded so that vertices are 

cross-referenced to corresponding edges. 
 

   Additional geometric information that is stored in the data tables 
includes the slope for each edge and the coordinate extends for 

each polygon. As vertices are input, we can calculate edge slopes 
and we can scan the coordinate values to identify the minimum 

and maximum x, y and z values for individual polygons. 
 

   The more information included in the data tables will be easier to 
check for errors. 

 

   Some of the tests that could be performed by a graphics package 
are: 

 

1. That every vertex is listed as an endpoint for at least two 
edges. 

 

2. That every edge is part of at least one polygon. 
 

3. That every polygon is closed. 
 

4. That each polygon has at least one shared edge. 
 

5. That if the edge table contains pointers to polygons, every 

edge referenced  by a  polygon  pointer  has a reciprocal 
pointer back to the polygon. 

 

Plane Equations: 
 

   To produce a display of a 3D object, we must process the input data 

representation for the object through several procedures such as, 
 

- Transformation   of   the   modeling   and   world   coordinate 

descriptions to viewing coordinates. 
 

-    Then to device coordinates: 
 

-    Identification of visible surfaces 
 

-    The application of surface-rendering procedures. 
 

   For  these  processes,  we  need  information  about  the  spatial 
orientation of the individual surface components of the object. This
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information is obtained from the vertex coordinate value and the 
equations that describe the polygon planes. 

 

The equation for a plane surface is 
 

Ax + By+ Cz + D = 0      ----(1) 
 

Where (x, y, z) is any point on the plane, and the coefficients A,B,C 
and D are constants describing the spatial properties of the plane. 

 

   We can obtain the values of A, B,C and D by solving a set of three 
plane equations using the coordinate values for three non collinear 

points in the plane. 
 

   For that, we can select three successive polygon vertices (x1, y1, z1), 

(x2,  y2,  z2)  and  (x3,  y3,  z3)  and  solve  the  following  set  of 
simultaneous linear plane equations for the ratios A/D, B/D  and 
C/D. 

(A/D)xk + (B/D)yk + (c/D)zk   =  -1,              k=1,2,3     -----(2) 

  The solution for this set of equations can be obtained in determinant 
form, using Cramer’s rule as 

 

 1 y1 z1 
 x1 1 z1 

 

A = 1 y2 z2 B = x2 1 z2 

 1 y3 z3 
 x3 1 z3 

  

x1 

 

y1 

 

1 

  

x1 

 

y1 

 

z1 

C = x2 y2 1 D = - x2 y2 z2 ------(3) 

 x3 y3 1  x3 y3 z3 
 

 
 

   Expanding the determinants , we can write the calculations for the 
plane coefficients in the form: 

 

A = y1 (z2 –z3 ) + y2(z3 –z1 ) + y3 (z1 –z2 ) 

B = z1 (x2 -x3 ) + z2 (x3 -x1 ) + z3 (x1 -x2 ) 

C = x1 (y2 –y3 ) + x2 (y3 –y1 ) + x3 (y1 -y2 ) 

D = -x1 (y2 z3 -y3 z2 ) - x2 (y3 z1 -y1 z3 ) - x3 (y1 z2 -y2 z1) ------(4) 
 

   As  vertex  values  and  other  information  are  entered  into  the 
polygon data structure, values for A, B, C and D are computed for 

each polygon and stored with the other polygon data. 
 

   Plane equations are used also to identify the position of spatial 

points relative to the plane surfaces of an object. For any point (x, 
y, z) hot on a plane with parameters A,B,C,D, we have 

 

Ax + By + Cz + D ≠ 0
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   We can identify the point as either inside or outside the plane 

surface according o the sigh (negative or positive) of Ax + By + Cz + 
D: 

 

If Ax + By + Cz + D < 0, the point (x, y, z) is inside the 
surface. 

 

If Ax + By + Cz + D > 0, the point (x, y, z) is outside the 
surface. 

 

   These  inequality  tests  are  valid  in  a  right  handed  Cartesian 

system, provided the plane parmeters A,B,C and D were calculated 
using vertices selected in a counter clockwise order when viewing 
the surface in an outside-to-inside direction. 

 

Polygon Meshes 
 

   A single plane surface can be specified with a function such as 
fillArea. But when object surfaces are to be tiled, it is more 

convenient to specify the surface facets with a mesh function. 
 

 One type of polygon mesh is the triangle strip.A triangle strip 
formed with 11 triangles connecting 13 vertices. 

 

 
 
 
 
 
 

 
 
 
 

 
 
 

   This   function   produces   n-2   connected   triangles   given   the 

coordinates for n vertices. 
 

 
 

   Another  similar  function  in  the  quadrilateral  mesh,  which 
generates a mesh of (n-1) by (m-1) quadrilaterals, given the 

coordinates  for  an  n  by  m  array  of  vertices.  Figure  shows  20 
vertices forming a mesh of 12 quadrilaterals. 
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2.2.2 Curved Lines and Surfaces 

 

   Displays of three dimensional curved lines and surface can be 
generated from an input set of mathematical functions defining the 

objects or from a set of user specified data points.
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equations for a curve to the display plane and plot pixel positions 
along the path of the projected function. 

 

   For surfaces, a functional description in decorated to produce a 
polygon-mesh approximation to the surface. 

 

2.2.3 Quadric Surfaces 
 

   The quadric surfaces are described with second degree equations 
(quadratics). 

 

   They    include    spheres,    ellipsoids,    tori,    parabolids,    and 
hyperboloids. 

 

Sphere 
 

   In  Cartesian  coordinates,  a  spherical  surface  with  radius  r 

centered on the coordinates origin is defined as the set of points (x, 
y, z) that satisfy the equation. 

 

x2 + y2 + z2 = r2                                -------------------------(1) 

 

   The spherical surface can be represented in parametric form by 
using latitude and longitude angles 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x = r cosφ cosθ, -л/2 <= φ<= л/2  

y = r cosφ sinθ, -л <= φ <= л -------(2) 

z = rsinφ   

   The  parameter  representation  in  eqn  (2)  provides  a  symmetric 

range for the angular parameter θ and φ. 
 

Ellipsoid 
 

   Ellipsoid surface is an extension of a spherical surface where the 
radius in  three  mutually  perpendicular  directions  can  have 

different values
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   The Cartesian  representation  for  points  over the surface of an 
ellipsoid centered on the origin is 

x      
+  

y      
+ 

rx                    ry 

z     
= 1 

rz

 

   The parametric representation for the ellipsoid in terms of the 
latitude angle φ and the longitude angle θ is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x = rx cosφ cosθ,   -л/2 <= φ <= л/2 
 

y = ry cosφ sinθ,   -л <= φ <= л 
 

z = rz sinφ 
 

 

Torus  
 

Torus is a doughnut shaped object. 
 

It can be generated by rotating a circle or other conic about a 

specified axis. 
 

A torus with a circular cross section centered on the 
coordinate origin
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   The Cartesian representation for points over the surface of a torus 

can be written in the form 
 

r   
x           y 

rx                  ry 

z     
= 1 

rz

 

where r in any given offset value. 
 

   Parametric representation for a torus is similar to those for an 
ellipse, except that angle φ extends over 360o. 

 

   Using latitude and longitude angles φ and θ, we can describe the 
torus surface as the set of points that satisfy. 

 

x = rx (r + cosφ) cosθ,              -л <= φ <= л 

y = ry(r+ cosφ )sinθ,                 -л <= φ <= л 

z = rz sinφ 

2.2.4 Spline Representations 
 

   A Spline is a flexible strip used to produce a smooth curve through 
a designated set of points. 

 

   Several small weights are distributed along the length of the strip 
to hold it in position on the drafting table as the curve is drawn. 

 

   The  Spline  curve  refers  to  any  sections  curve  formed  with 

polynomial sections satisfying specified continuity conditions at 
the boundary of the pieces. 

 

   A Spline surface can be described with two sets of orthogonal 
spline curves. 

 

   Splines  are  used  in  graphics  applications  to  design  curve  and 
surface shapes, to digitize drawings for computer storage, and to
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specify animation paths for the objects or the camera in the scene. 

CAD applications for splines include the design of automobiles 
bodies, aircraft and spacecraft surfaces, and ship hulls. 

 

Interpolation and Approximation Splines 
 

   Spline curve can be specified by a set of coordinate positions called 

control points which indicates the general shape of the curve. 
 

   These   control   points   are   fitted   with   piecewise   continuous 

parametric polynomial functions in one of the two ways. 
 

1. When polynomial sections are fitted so that the curve passes 

through each control point the resulting curve is said to 
interpolate the set of control points. 

 

A set of six control points interpolated with piecewise 
continuous polynomial sections 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2. When the polynomials are fitted to the general control point 
path without necessarily passing through any control points, 
the resulting curve is said to approximate the set of control 

points. 
 

A set of six control points approximated with piecewise 
continuous polynomial sections 

 

 
 

 
 

   Interpolation curves are used to digitize drawings or to specify 
animation paths. 

 

   Approximation curves are used as design tools to structure object 
surfaces.
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   A  spline  curve  is  designed  ,  modified  and  manipulated  with 

operations on the control points.The curve can be translated, 
rotated or scaled with transformation applied to the control points. 

 

   The convex polygon boundary that encloses a set of control points 

is called the convex hull. 
 

   The shape of the convex hull is to imagine a rubber band stretched 

around the position of the control points so that each control point 
is either on the perimeter of the hull or inside it. 

 

Convex hull shapes (dashed lines) for two sets of control points 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parametric Continuity Conditions 
 

   For a smooth transition from one section of a piecewise parametric 

curve to the next various continuity conditions are needed at the 

connection points. 
 

   If each section of a spline in described with a set of parametric 
coordinate functions or the form 

x =  x(u), y = y(u),  z = z(u), u1<= u <= u2          -----(a) 

  We  set  parametric  continuity  by  matching  the  parametric 
derivatives of adjoining curve sections at their common boundary. 

 

   Zero order parametric continuity referred to as C0  continuity, 
means that the curves meet. (i.e) the values of x,y, and z evaluated 

at u2 for the first curve section are equal. Respectively, to the value 

of x,y, and z evaluated at u1 for the next curve section. 
 

   First order parametric continuity referred to as C1  continuity 
means that the first parametric derivatives of the coordinate 

functions in equation (a) for two successive curve sections are 
equal at their joining point. 

 

   Second order parametric continuity, or C2 continuity means 

that both the first and second parametric derivatives of the two 
curve sections are equal at their intersection.
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similarly. 
 

Piecewise construction of a curve by joining two curve segments 
using different orders of continuity 

 

a)Zero order continuity only 
 

 
 

 
 

b)First order continuity only 
 
 
 
 
 
 
 
 
 
 
 

c) Second order continuity only 
 
 
 
 
 
 
 
 

 

Geometric Continuity Conditions 
 

   To  specify  conditions  for  geometric  continuity  is  an  alternate 

method for joining two successive curve sections. 
 

   The   parametric   derivatives   of   the   two   sections   should   be 

proportional to each other at their common boundary instead of 
equal to each other. 

 

   Zero order Geometric continuity referred as G0  continuity means 

that the two curves sections must have the same coordinate 
position at the boundary point. 

 

   First order Geometric Continuity referred as G1  continuity means 
that the  parametric  first  derivatives  are  proportional  at  the 

interaction of two successive sections. 
 

   Second order Geometric continuity referred as G2 continuity means 

that both the first and second parametric derivatives of the two 
curve sections are proportional at their boundary. Here the 
curvatures of two sections will match at the joining position.
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Three control points fitted with two curve sections joined with a) 

parametric continuity 

 
 

 
 

b)geometric continuity where the tangent vector of curve C3 at 
point p1 has a greater magnitude than the tangent vector of curve 
C1 at p1. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Spline specifications 
 

There are three methods to specify a spline representation: 
 

1. We can state the set of boundary conditions that are imposed on the 
spline; (or) 

 

2. We can state the matrix that characterizes the spline; (or) 
 

3. We  can  state  the  set  of  blending  functions that  determine  how 
specified geometric constraints on the curve are combined to calculate 
positions along the curve path. 

 

   To illustrate these three equivalent specifications, suppose we have 

the following parametric cubic polynomial representation for the x 

coordinate along the path of a spline section. 

x(u)=axu3 + axu2 + cxu + dx                          0<= u <=1   ----------(1) 

Boundary  conditions  for  this  curve  might  be  set  on  the 

endpoint coordinates x(0) and x(1) and on the parametric first derivatives 
at the endpoints x’(0) and x’(1). These boundary conditions are sufficient 

to determine the values of the four coordinates ax, bx, cx and dx. 
 

From the boundary conditions we can obtain the matrix that 
characterizes  this  spline  curve  by  first  rewriting eq(1) as  the matrix 

product
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1] ax 
 

 bx 

 cx -------( 2 ) 

 dx 
 

 

 

x(u) = [u3       u2        u1 
 

 
 
 
 
 
 
 
 

= U.C 
 

where U is the row matrix of power of parameter u  and C is the 

coefficient column matrix. 
 

   Using equation (2) we can write the boundary conditions in matrix 

form and solve for the coefficient matrix C as 

C = Mspline . Mgeom                                                                                     -----(3) 

Where Mgeom in a four element column matrix containing the geometric 
constraint values   on the spline and Mspline  in the 4 * 4 matrix that 
transforms the geometric constraint values to the polynomial coefficients 
and provides a characterization for the spline curve. 

 

   Matrix Mgeom contains control point coordinate values and other 
geometric constraints. 

 

   We can substitute the matrix representation for C into equation (2) 
to obtain. 

 

x (u) = U . Mspline . Mgeom                                                   ------(4) 
 

   The matrix Mspline,  characterizing a spline representation, called 

the basis matriz is useful for transforming from one spline 

representation to another. 
 

   Finally we can expand equation (4) to obtain a polynomial 

representation for   coordinate   x   in   terms  of  the   geometric 
constraint parameters. 

 

x(u) =  ∑ gk. BFk(u) 
 

where gk are the constraint parameters, such as the control point 

coordinates and slope of the curve at the control points and BFk(u) are 
the polynomial blending functions. 

 

 
 

2.3  Visualization of Data Sets 
 

   The  use  of  graphical  methods  as  an  aid  in  scientific  and 

engineering analysis   is   commonly   referred   to   as   scientific 
visualization. 

 

   This involves the   visualization   of data sets and processes that 

may be difficult   or impossible to analyze without graphical 
methods. Example  medical  scanners,  satellite  and  spacecraft 

scanners.
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   Visualization  techniques  are  useful  for  analyzing  process  that 

occur over a long period of time or that cannot observed directly. 
Example quantum mechanical  phenomena and special relativity 
effects produced by objects traveling near the speed of light. 

 

   Scientific visualization is used to visually display , enhance and 
manipulate information to allow better understanding of the data. 

 

   Similar methods employed by commerce , industry and other 

nonscientific areas   are   sometimes   referred   to   as   business 
visualization. 

 

   Data sets are classified according to their spatial distribution ( 2D 
or 3D ) and according to data type (scalars , vectors , tensors and 

multivariate data ). 
 

 
Visual Representations for Scalar Fields 

 

   A scalar quantity is one that has a single value. Scalar data sets 

contain values that may be distributed in time as well as over 
spatial positions also the values may be functions of other scalar 

parameters. Examples of physical scalar quantities are energy, 
density, mass  , temperature and water content. 

 

   A common method for visualizing a scalar data set is to use graphs 

or charts that show the distribution of data values as a function of 

other parameters such as position and time. 
 

   Pseudo-color  methods  are  also  used  to  distinguish  different 
values in a scalar data set, and color coding techniques can be 

combined with graph and chart models. To color code a scalar data 
set we choose a range of colors and map the range of data values 

to the color range. Color coding a data set can be tricky because 
some  color  combinations  can  lead  to  misinterpretations  of  the 
data. 

 

   Contour plots are used to display isolines ( lines of constant 

scalar value) for a data set distributed over a surface. The isolines 
are spaced at some convenient interval to show the range and 
variation of the data values over the region of space. Contouring 

methods are applied to a set of data values that is distributed over 
a regular grid. 

 

A 2D contouring algorithm traces the isolines from cell to cell 
within the grid by checking the four corners of grid cells to 

determine which cell edges are crossed by a particular isoline. 
 

The path of an isoline across five grid cells
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Sometimes isolines are plotted with spline curves but spline fitting 
can lead to misinterpretation of the data sets. Example two spline 
isolines could cross or curved isoline paths might not be a true 

indicator of data  trends since data values are known only at the cell 
corners. 

 

For 3D scalar data fields we can take cross sectional slices and 
display the 2D data distributions over the slices. Visualization 

packages provide a slicer routine that allows cross sections to be 
taken at any angle. 

 

Instead of looking at 2D cross sections we plot one or more 
isosurfaces  which   are   simply   3D  contour  plots.     When  two 
overlapping isosurfaces are displayed the outer surface is made 

transparent so that we can view the shape of both isosurfaces. 
 

   Volume  rendering  which  is  like  an  X-ray  picture  is  another 
method  for  visualizing  a  3D  data  set.  The  interior  information 

about a data set is projected to a display screen using the ray- 
casting method. Along the ray path from each screen pixel. 

 

Volume visualization of a regular, Cartesian data grid 
using ray casting to examine interior data values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

.  Data values at the grid positions. are averaged so 

that one value is stored for each  voxel of the data space. How the 
data are encoded for display depends on the application.
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For this volume visualization, a color-coded plot of the 

distance to the maximum voxel value along each pixel ray was 
displayed. 

 

 
 

Visual representation for Vector fields 
 

   A vector quantity V in three-dimensional space has three scalar 
values 

 

( Vx , Vy,Vz, ) one for each coordinate direction, and a two- 

dimensional vector has two components (Vx, Vy,). Another way to 
describe a vector quantity is by giving its magnitude IV I and its 
direction as a unit vector u. 

 

As with scalars, vector quantities may be functions of 
position, time, and other parameters. Some examples of physical 

vector quantities are velocity, acceleration, force, electric fields, 
magnetic fields, gravitational fields, and electric current. 

 

One way to visualize a vector field is to plot each data point 
as a small arrow that shows the magnitude and direction of the 

vector. This method is most often used with cross-sectional slices, 
since it can be difficult to see the trends in a three-dimensional 
region cluttered with overlapping arrows. Magnitudes for the vector 

values can be shown by varying the lengths of the arrows. 
 

Vector values are also represented  by plotting field lines or 
streamlines . 

 

Field lines are commonly used for electric , magnetic and 
gravitational fields. The magnitude of the vector values is indicated 

by spacing between field lines, and the direction is the tangent to 
the field. 

 

Field line representation for a vector data set 
 

 
 

Visual Representations for Tensor Fields 
 

A tensor quantity in three-dimensional space has nine components 
and can be represented with a 3 by 3 matrix. This representation is used 

for a second-order tensor, and higher-order tensors do occur in some 
applications. 

 

Some examples of physical, second-order tensors are stress and 
strain in a material subjected to external forces, conductivity of an 
electrical conductor, and the metric tensor, which gives the properties of 

a particular coordinate space.
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The stress tensor in Cartesian coordinates,for example, can be 
represented as 

 

 
 

Tensor quantities are frequently encountered in anisotropic 
materials, which have different properties in different directions. The x, 

xy, and xz elements of the conductivity tensor, for example, describe the 
contributions of electric field components in the x, y, and z diretions to 
the current in the x direction. 

 

Usually, physical tensor quantities are symmetric, so that the 

tensor   has   only   six   distinct   values.   Visualization   schemes   for 
representing all six components of a second-order tensor quantity are 
based on devising shapes that have six parameters. 

 

Instead  of  trying  to  visualize  all  six  components  of  a  tensor 

quantity, we can reduce the tensor to a vector or a scalar. And by 
applying tensor-contraction operations, we can obtain a scalar 
representation. 

 

Visual Representations for Multivariate Data Fields 
 

In some applications, at each grid position over some region of 

space, we may have multiple data values, which can be a mixture of 
scalar, vector, and even tensor values. 

 

A method for displaying multivariate data fields is to construct 
graphical objects, sometimes referred to as glyphs, with multiple parts. 

Each part of a glyph represents a physical quantity. The size and color of 
each part can be used to display information about scalar magnitudes. 
To give directional information for a vector field, we can use a wedge, a 

cone, or some other pointing shape for the glyph part representing the 

vector. 
 

2.4 Three Dimensional Geometric and Modeling Transformations 
 

Geometric   transformations   and   object   modeling   in   three 

dimensions are extended from two-dimensional methods by including 
considerations for the z-coordinate. 

 

 
 
 
 
 
 
 
 

2.4.1 Translation
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In a three dimensional homogeneous coordinate representation, a 

point or an object is translated from position P = (x,y,z) to position P’ = 
(x’,y’,z’) with the matrix operation. 

 

 
 x’  1 0 0 tx x  

y’ = 0 1 0 ty y 
 

 

(1) 

z’  0 0 1 yz z -------- 

 1  0 0 0 1 1  

 
 

(or)    P’ = T.P                                             ----------------(2) 
 

Parameters tx, ty  and tz  specifying translation distances for the 
coordinate directions x,y and z are assigned any real values. 

 

The matrix representation in equation (1) is equivalent to the three 
equations 

 

x’  = x + tx 
 

y’ = y + ty 

z’ =  z + tz                                                -------------------------------(3) 

Translating a point with translation vector  T = (tx, ty, tz) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inverse of the translation matrix in equation (1) can be obtained by 
negating the translation distance tx, ty and tz. 

This produces a translation in the opposite direction and the 
product of a translation matrix and its inverse produces the identity 

matrix. 
 

 
 
 
 

2.4.2 Rotation
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   To  generate a  rotation  transformation for  an object an axis of 
rotation must be designed to rotate the object and the amount of 

angular rotation is also be specified. 
 

   Positive rotation angles produce counter clockwise rotations about 

a coordinate axis. 
 

 
Co-ordinate Axes Rotations 

 

 
 

The 2D z axis rotation equations are easily extended to 3D. 
 

x’ = x cos θ – y sin θ 

y’ = x sin θ + y cos θ 

z’ = z                              --------------------------(2) 
 

Parameters   θ   specifies   the   rotation  angle.  In  homogeneous 
coordinate form, the 3D z axis rotation equations are expressed as 

 

 
 

x’              cosθ     -sinθ 0       0                x 
 

y’       =       sinθ    cosθ  0       0                y 
 

z’                0       0       1       0                z    -------(3) 
 

1                0       0       0       1                1 

which we can write more compactly as 

P’ = Rz (θ) . P                        ------------------(4) 
 

The below figure illustrates rotation of an object about the z axis. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Transformation   equations   for   rotation   about   the   other   two 

coordinate  axes  can  be  obtained  with  a  cyclic  permutation  of  the
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(or) P’ = Rx (θ). P 
 

 

coordinate  parameters  x,  y  and  z  in  equation  (2)  i.e.,  we  use  the 
replacements 

 

x   y  z  x              ---------(5) 
 

Substituting permutations (5) in equation (2), we get the equations 
for an x-axis rotation 

 

y’       =       ycosθ - zsinθ 
 

z’       =       ysinθ + zcosθ        ---------------(6) 
 

x’      =       x 
 

which can be written in the homogeneous coordinate form 
 

 

x’  1 0 0 0 x  

y’ = 0 cosθ -sinθ 0 y 

z’  0 sinθ cosθ 0 z -------(7) 

1  0 0 0 1 1  

 
 

-----------(8) 
 

Rotation of an object around the x-axis is demonstrated in the 
below fig 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cyclically   permuting   coordinates   in   equation   (6)   give   the 
transformation equation for a y axis rotation. 

 

z’ = zcosθ - xsinθ  

x’ = zsinθ + xcosθ ---------------(9) 

y’ = y  

 
 
 
 

The matrix representation for y-axis rotation is 
 

x’                cosθ     0        sinθ     0           x
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y’ = 0 1 0 0 y  

z’  -sinθ 0 cosθ 0 z --------(10) 

1  0 0 0 1 1  

 
 

(or)    P’ = Ry (θ). P            ----------------( 11 ) 
 

An example of y axis rotation is shown in below figure 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   An inverse rotation matrix is formed by replacing the rotation angle 
θ by –θ. 

 

   Negative  values  for  rotation  angles  generate  rotations  in  a 

clockwise direction, so the identity matrix is produces when any 
rotation matrix is multiplied by its inverse. 

 

   Since only the sine function is affected by the change in sign of the 

rotation angle,  the  inverse  matrix  can  also  be  obtained  by 
interchanging  rows  and  columns.  (i.e.,)  we  can  calculate  the 

inverse  of  any  rotation  matrix  R  by  evaluating  its  transpose 
(R-1 = RT). 

 

General Three Dimensional Rotations 
 

   A  rotation  matrix  for  any  axis  that  does  not  coincide  with  a 

coordinate axis can be set up as a composite transformation 
involving combinations of translations and the coordinate axes 

rotations. 
 

   We obtain the required composite matrix by 
 

1. Setting  up  the  transformation  sequence  that  moves  the 
selected rotation axis onto one of the coordinate axis. 

 

2. Then set up the rotation matrix about that coordinate axis 
for the specified rotation angle.
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3. Obtaining the inverse transformation sequence that returns 
the rotation axis to its original position. 

 

   In the special case where an object is to be rotated about an axis 

that is parallel to one of the coordinate axes, we can attain the 
desired rotation with the following transformation sequence: 

 

1. Translate the object so that the rotation axis coincides with 
the parallel coordinate axis. 

 

2. Perform the specified rotation about the axis. 
 

3. Translate the object so that the rotation axis is moved back 
to its original position. 

 

   When an object is to be rotated about an axis that is not parallel to 

one of the coordinate axes, we need to perform some additional 
transformations. 

 

   In such case, we need rotations to align the axis with a selected 

coordinate axis and to bring the axis back to its original orientation. 
 

   Given the specifications for the rotation axis and the rotation angle, 

we can accomplish the required rotation in five steps: 
 

1. Translate the object so that the rotation axis passes through 

the coordinate origin. 
 

2. Rotate the object so that the axis of rotation coincides with 
one of the coordinate axes. 

 

3. Perform the specified rotation about that coordinate axis. 
 

4. Apply inverse rotations to bring the rotation axis back to its 
original orientation. 

 

5. Apply the inverse translation to bring the rotation axis back 
to its original position. 

 

Five transformation steps 
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2.4.3 Scaling 

 

   The matrix expression for the scaling transformation of a position 
P = (x,y,.z) relative to the coordinate origin can be written as 

 

 

x’  sx 0 0 0 x  

y’ = 0 sy 0 0 y 

z’  0 0 sz 0 z --------(11) 

1  0 0 0 1 1  

 
 

(or)             P’ = S.P      ---------(12) 
 

where scaling parameters sx , sy, and sz  are assigned any position values. 
 

   Explicit expressions for the coordinate transformations for scaling 

relative to the origin are 
 

x’ = x.sx 
 

y’ = y.sy          ----------(13) 
 

z’ = z.sz 
 

   Scaling an object changes the size of the object and repositions the 

object relatives to the coordinate origin. 
 

   If the transformation parameters are not equal, relative dimensions 

in the object are changed. 
 

   The original shape of the object is preserved with a uniform scaling 

(sx  = sy=  sz) . 
 

   Scaling with respect to a selected fixed position (x f, yf, zf) can be 

represented  with the following transformation sequence: 
 

1. Translate the fixed point to the origin. 
 

2. Scale the object relative to the coordinate origin using Eq.11.



27 

Unit II – Computer Graphics 
 

 

 

3. Translate the fixed point back to its original position. This 
sequence of transformation is shown in the below figure . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   The matrix representation for an arbitrary fixed point scaling can 

be expressed as the concatenation of the translate-scale-translate 
transformation are 

 

T (xf, yf, zf) . S(sx, sy, sz ). T(-xf,-yf, -zf ) = 
 

sx 0 0 (1-sx)xf 
 

0 sy 0 (1-sy)yf -------------(14) 

0 0 sz (1-sz)zf 
 

0 0 0 1  

   Inverse   scaling   matrix   m   formed   by   replacing   the   scaling 

parameters sx, sy and sz with their reciprocals. 

   The inverse matrix generates an opposite scaling transformation, 
so the  concatenation  of  any  scaling  matrix  and  its  inverse 

produces the identity matrix. 
 

2.4.4 Other Transformations 
 

Reflections 
 

   A 3D reflection can be performed relative to a selected reflection 
axis or with respect to a selected reflection plane. 

 

   Reflection relative to a given axis are equivalent to 1800  rotations 

about the axis.
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   Reflection relative to a plane are equivalent to 1800 rotations in 4D 
space. 

 

   When the reflection plane in a coordinate plane ( either xy, xz or yz) 

then the transformation can be a conversion between left-handed 
and right-handed systems. 

 

   An example of a reflection that converts coordinate specifications 

from a right handed system to a left-handed system is shown in 
the figure 

 

 
 

 
 

   This transformation changes the sign of z coordinates, leaves the x 
and y coordinate values unchanged. 

 

   The matrix representation for this reflection of points relative to the 

xy plane is 
 

 1 0 0 0 

RFz = 0 1 0 0 

  0 0 -1 0 

  0 0 0 1 

 
 

   Reflections about other planes can be obtained as a combination 

of rotations and coordinate plane reflections. 
 

Shears 
 

   Shearing transformations are used to modify object shapes. 
 

  They  are  also  used  in  three  dimensional  viewing  for  obtaining 

general projections transformations. 
 

  The following transformation produces a z-axis shear. 
 

1       0       a       0 
 

SHz     =       0       1       b       0 
 

0       0       1       0 
 

0       0       0       1 
 

Parameters a and b can be assigned any real values.
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This transformation matrix is used to alter x and y coordinate 

 

 

 

values by an amount that is proportional to the z value, and the z 
coordinate will be unchanged. 

 

   Boundaries  of  planes  that  are  perpendicular  to  the  z axis  are 
shifted by an amount proportional to z the figure shows the effect 

of shearing matrix on a unit cube for the values a = b = 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.4.5 Composite Transformation 
 

   Composite three dimensional transformations can be formed by 
multiplying the matrix representation for the individual operations 

in the transformation sequence. 
 

   This concatenation is carried out from right to left, where the right 
most matrixes is the first transformation to be applied to an object 

and the left most matrix is the last transformation. 
 

   A sequence of basic, three-dimensional geometric transformations 

is combined to produce a single composite transformation which 
can be applied to the coordinate definition of an object. 

 

2.4.6Three Dimensional Transformation Functions 
 

Some of the basic 3D transformation functions are: 

translate ( translateVector, matrixTranslate) 

rotateX(thetaX, xMatrixRotate) 

rotateY(thetaY, yMatrixRotate) 

rotateZ(thetaZ, zMatrixRotate) 

scale3 (scaleVector, matrixScale) 

   Each of these functions produces a 4 by 4 transformation matrix 

that can be used to transform coordinate positions expressed as 
homogeneous column vectors. 

 

   Parameter  translate  Vector  is  a  pointer  to  list  of  translation 
distances tx, ty, and tz.
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Parameter scale vector specifies the three scaling parameters sx, sy 

 

 

 

and sz. 
 

   Rotate and scale matrices transform objects with respect to the 
coordinate origin. 

 

   Composite transformation can be constructed with the following 
functions: 

 

composeMatrix3 

buildTransformationMatrix3 

composeTransformationMatrix3 

   The order of the transformation sequence for the 

buildTransformationMarix3 and composeTransfomationMarix3 
functions, is the same as in 2 dimensions: 

 

1. scale 
 

2. rotate 
 

3. translate 
 

   Once  a  transformation  matrix  is  specified,  the  matrix  can  be 
applied to specified points with 

 

transformPoint3 (inPoint, matrix, outpoint) 
 

   The transformations for hierarchical construction can be set using 
structures with the function 

 

setLocalTransformation3 (matrix, type) 
 

where parameter matrix specifies the elements of a 4 by 4 

transformation matrix and parameter type can be assigned one of the 
values of: 

 

Preconcatenate, 

Postconcatenate, or replace. 

2.4.7 Modeling and Coordinate Transformations 
 

   In modeling, objects are described in a local (modeling) coordinate 

reference frame, then the objects are repositioned into a world 
coordinate scene. 

 

   For instance, tables, chairs and other furniture, each defined in a 

local coordinate system, can be placed into the description of a 
room defined in another reference frame, by transforming the 

furniture coordinates to room coordinates. Then the room might be 
transformed into a larger scene constructed in world coordinate. 

 

   Three  dimensional  objects  and  scenes  are  constructed  using 

structure operations. 
 

   Object  description  is  transformed  from  modeling  coordinate  to 

world coordinate or to another system in the hierarchy.
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   Coordinate descriptions of objects are transferred from one system 

to another system with the same procedures used to obtain two 
dimensional coordinate transformations. 

 

   Transformation matrix has to be set up to bring the two coordinate 

systems into alignment: 
 

- First, a translation is set up to bring the new coordinate 

origin to the position of the other coordinate origin. 
 

- Then a sequence of rotations are made to the corresponding 
coordinate axes. 

 

- If different scales are used in the two coordinate systems, a 

scaling transformation may also be necessary to compensate 

for the differences in coordinate intervals. 
 

   If a second coordinate system is defined with origin (x0, y0,z0) and 

axis  vectors  as  shown  in  the    figure    relative  to  an  existing 

Cartesian reference frame, then first construct the translation 

matrix T(-x0, -y0, -z0), then we can use the unit axis vectors to form 
the coordinate rotation matrix 

 

u’x1      u’x2      u’x3      0 
 

R =    u’y1      u’y2      u’y3      0 
 

u’z1      u’z2      u’z3      0 
 

0       0       0       1 
 

which transforms unit vectors u’x, u’y  and u’z  onto the x, y and z 
axes respectively. 

 

Transformation of an object description from one 
coordinate system to another. 

 
 
 
 
 
 
 
 
 
 
 
 

 

   The complete coordinate-transformation sequence is given by the 

composite matrix R .T. 
 

   This matrix correctly transforms coordinate descriptions from one 

Cartesian system to another even if one system is left-handed and 
the other is right handed.
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rdinates 

 

 

ordinates 

 
 
 

2.5Three-Dimensional Viewing 
 

In three dimensional graphics applications, 
 

- we can view an object from any spatial position, from the 
front, from above or from the back. 

 

- We could generate a view of what we could see if we were 

standing in the middle of a group of objects or inside object, 
such as a building. 

 

2.5.1Viewing Pipeline: 
 

In the view of a three dimensional scene, to take a snapshot we 

need to do the following steps. 
 

1. Positioning the camera at a particular point in space. 
 

2. Deciding   the   camera   orientation   (i.e.,)   pointing   the 
camera and rotating it around the line of right to set up 

the direction for the picture. 
 

3. When snap the shutter, the scene is cropped to the size of 
the ‘window’ of the camera and light from the visible 
surfaces is projected into the camera film. 

 

In such a way the below figure shows the three dimensional 
transformation pipeline, from modeling coordinates to final device 
coordinate. 

 

Modeling                                          World 
 

Viewing Viewing
 

Co-ordinates 
ordinates 

Modeling 

transformation 

 

Co-o transformation 
 

Co-

 

 
Projection                                        Device.

 

Projection 

Transformation 

 

Co-ordinates 
 

Work Station 

Transformation 

 

co-

 

 
 

Processing Steps 
 

1. Once the scene has been modeled, world coordinates position is 
converted to viewing coordinates. 

 

2. The viewing coordinates system is used in graphics packages as 
a reference for specifying the observer viewing position and the 
position of the projection plane. 

 

3. Projection  operations  are  performed  to  convert  the  viewing 

coordinate description of the scene to coordinate positions on 
the projection plane, which will then be mapped to the output 
device.
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4. Objects  outside  the  viewing  limits  are  clipped  from  further 

consideration, and the remaining objects are processed through 
visible surface identification and surface rendering procedures 
to produce the display within the device viewport. 

 

 
 

2.5.2Viewing Coordinates 
 

Specifying the view plane 
 

   The  view  for  a  scene  is  chosen  by  establishing  the  viewing 

coordinate system, also called the view reference coordinate 
system. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   A viewplane or projection plane is set-up perpendicular to the 

viewing Zv axis. 
 

   World coordinate positions in the scene are transformed to viewing 

coordinates, then viewing coordinates are projected to the view 
plane. 

 

   The view reference point is a world coordinate position, which is 

the origin of the viewing coordinate system. It is chosen to be close 
to or on the surface of some object in a scene. 

 

   Then we select the positive direction for the viewing Zv  axis, and 

the orientation of the view plane by specifying the view plane 
normal vector, N. Here the world coordinate position establishes 
the direction for N relative either to the world origin or to the 

viewing coordinate origin. 
 
 
 
 
 
 
 
 
 
 

 

   Then we select the up direction for the view by specifying a vector 

V called the view-up vector. This vector is used to establish the 

positive direction for the yv axis.
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Specifying the view –up vector with a twist angle θt 
 

 
 

Transformation from world to viewing coordinates 
 

   Before object descriptions can be projected to the view plane, they 
must  be  transferred  to  viewing  coordinate. This transformation 

sequence is, 
 

1. Translate the view reference point to the origin of the 
world coordinate system. 

 

2. Apply rotations to align the xv, yv  and zv  axes with the 
world xw,yw and zw axes respectively. 

   If   the view reference point is specified at world position(x0,y0,z0) 
this point is translated to the world origin with   the matrix 

transformation. 
 

 1 0 0 -x0 

T  = 0 1 0 -y0 

 0 0 1 -z0 

 0 0 0 1 

   The rotation sequence can require up to 3 coordinate axis rotations 

depending on the direction chosen for N. Aligning a viewing system 

with the world coordinate axes using a sequence of translate – 
rotate transformations 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Another method for generation the rotation transformation matrix 

is to calculate unit uvn vectors and form the composite rotation 
matrix directly. 

 

Given vectors N and V, these unit vectors are calculated as 

n = N / (|N|)   =   (n1, n2, n3)
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u = (V*N) / (|V*N|)   =  (u1, u2, u3) 
 

v = n*u = (v1, v2, v3) 
 

   This method automatically adjusts the direction for v, so that v is 
perpendicular to n. 

 

   The composite rotation matrix for the viewing transformation is 

u1         u2        u3        0 

R =    v1         v2         v3         0 

n1         n2         n3         0 

0       0       0       1 
 

which transforms u into the world xw axis, v onto the yw axis and n 
onto the zw axis. 

 

   The complete world-to-viewing transformation matrix is obtained 
as the matrix product. Mwc, vc   = R.T 

This transformation is applied to coordinate descriptions of objects 
in the scene transfer them to the viewing reference frame. 

 

2.5   Projections 
 

   Once world coordinate descriptions of the objects are converted to 

viewing coordinates, we can project the 3 dimensional objects onto 
the two dimensional view planes. 

 

   There are two basic types of projection. 
 

1. Parallel Projection - Here the coordinate positions are 
transformed to the view plane along parallel lines. 

 

Parallel projection of an object to the view plane 
 

 
 
 
 
 
 
 
 
 
 

2. Perspective  Projection  –  Here,  object  positions  are 

transformed to the view plane along lines that converge to 
a point called the projection reference point.
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Perspective projection of an object to the view 
plane 

 
 

 
 

 
Parallel Projections 

 

   Parallel projections are specified with a projection vector that 
defines the direction for the projection lines. 

 

   When the projection in perpendicular to the view plane, it is said to 

be an Orthographic parallel projection, otherwise it said to be an 
Oblique parallel projection. 

 

Orientation of the projection vector Vp  to produce an 
orthographic projection (a) and an oblique projection (b) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Orthographic Projection 
 

   Orthographic projections are used to produce the front, side and 
top views of an object. 

 

   Front,  side  and  rear  orthographic  projections  of  an  object  are 
called elevations. 

 

   A top orthographic projection is called a plan view. 
 

   This projection gives the measurement of lengths and angles 
accurately.
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Orthographic projections of an object, displaying plan 
and elevation views 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   The orthographic projection that displays more than one face of an 

object is called axonometric orthographic projections. 
 

   The most commonly used axonometric projection is the isometric 

projection. 
 

   It can be generated by aligning the projection plane so that it 

intersects each coordinate axis in which the object is defined as 
the same distance from the origin. 

 

Isometric projection for a cube 
 

 
 

 
 

   Transformation equations for an orthographic parallel projection 
are straight forward.
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   If the view plane is placed at position zvp along the zv axis then any 

point (x,y,z) in viewing coordinates is transformed to projection 

coordinates as 
 

xp = x,   yp = y 
 

where the original z coordinates value is kept for the depth 
information needed in depth cueing and visible surface determination 
procedures. 

 

Oblique Projection 
 

   An  oblique  projection  in  obtained  by  projecting  points  along 

parallel lines that are not perpendicular to the projection plane. 
 

   The below figure α and φ are two angles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   Point (x,y,z)  is projected to position (xp,yp) on the view plane. 
 

   The oblique projection line form (x,y,z) to (xp,yp) makes an angle α 
with the line on the projection plane that joins (xp,yp) and (x,y). 

 

   This line of length L in at an angle φ with the horizontal direction 

in the projection plane. 
 

   The projection coordinates are expressed in terms of x,y, L and φ 
as 

 

xp  = x + Lcosφ               - - - -(1) 
 

yp  = y + Lsinφ 
 

   Length  L depends on the angle α and the z coordinate of the point 

to be projected:
 

 
 

thus, 

 

tanα = z / L 
 

 
 

L = z / tanα 
 

= z L1
 

where L1 is the inverse of tanα, which is also the value of L when z = 1.
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   The oblique projection equation (1) can be  written as 

xp   = x + z(L1cosφ) 

yp = y + z(L1sinφ) 
 

   The transformation matrix for producing any parallel projection 

onto the xvyv   plane is 
 

1       0      L1cosφ 0 
 

Mparallel    =   0       1      L1sinφ 0 
 

0       0       1       0 
 

0       0       0       1 
 

   An orthographic projection is obtained when L1  = 0 (which occurs 
at a projection angle α of 900) 

 

   Oblique projections are generated with non zero values for L1. 
 

Perspective Projections 
 

   To  obtain  perspective  projection  of  a  3D  object,  we  transform 

points along projection lines that meet at the projection reference 
point. 

 

   If the projection reference point is set at position zprp  along the zv 

axis and the view plane is placed at zvp  as in fig , we can write 
equations describing coordinate positions along this perspective 

projection line in parametric form as 
 

x’ = x - xu 
 

y’ = y - yu 
 

z’ = z – (z – zprp) u 
 

Perspective projection of a point P with coordinates (x,y,z). to 

position (xp, yp,zvp) on the view plane. 
 

 
 

 
 

 
 
 
 

   Parameter u takes values from 0 to 1 and coordinate position (x’, y’,z’) 
represents any point along the projection line.
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   When u = 0, the  point is at P = (x,y,z). 
 

   At the other end of the line, u = 1 and the projection reference point 

coordinates (0,0,zprp) 
 

   On the view  plane z` = zvp and z` can be solved for parameter u at this 

position along the projection line: 
 

   Substituting this value of u into the equations for x` and y`, we obtain 

the perspective transformation equations. 
 

xp = x((zprp – zvp) / (zprp – z)) = x( dp/(zprp – z)) 
 

yp = y((zprp -  zvp) / (zprp – z)) = y(dp / (zprp – z)) --------------(2) 
 

where dp  = zprp  – zvp    is the distance of the view plane from the 
projection reference point. 

 

   Using a 3D homogeneous coordinate representation we can write the 
perspective projection transformation (2) in matrix form as 

 

xh 
 1 0 0 0 x 

yh = 0 1 0 0 y 

zh 
 0 0 -(zvp/dp) zvp(zprp/dp) z   --------(3) 

h  0 0 -1/dp zprp/dp 1 

   In this representation, the homogeneous factor is 

h = (zprp-z)/dp                    --------------(4) 

and the projection coordinates on the view plane are calculated 
from eq (2)the homogeneous coordinates as 

 

xp = xh / h 
 

yp = yh / h                     ---------------------(5) 
 

where  the  original  z  coordinate  value  retains  in  projection 

coordinates for depth processing. 
 

 
 

2.6   CLIPPING 
 

 
 

   An algorithm for three-dimensional clipping identifies and saves all 
surface segments within the view volume for display on the output 

device. All parts of objects that are outside the view volume are 
discarded. 

 

   Instead of clipping against straight-line window boundaries, we 
now clip objects against the boundary planes of the view volume. 

 

   To clip a line segment against the view volume, we would need to 

test the relative position of the line using the view volume's 
boundary plane equations. By substituting the line endpoint 
coordinates into the plane equation of each boundary in turn, we
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could determine whether the endpoint is inside or outside that 
boundary. 

 

   An endpoint (x, y, z) of a line segment is outside a boundary plane 
if  Ax + By + Cz + D > 0, where A, B , C, and D are the plane 

parameters for that boundary. 
 

   Similarly, the point is inside the boundary if Ax + By + Cz +D < 0. 

Lines with both endpoints outside a boundary plane are discarded, 
and those  with  both  endpoints  inside  all boundary planes are 
saved. 

 

   The intersection of a line with a boundary is found using the line 
equations along with the plane equation. 

 

    Intersection coordinates (x1, y1, z1) are values that are on the line 

and that satisfy the plane equation Ax1, + By1 + Cz1 + D = 0. 
 

   To clip a polygon surface, we can clip the individual polygon edges. 
First, we could test the coordinate extents against each boundary 
of the view volume to determine whether the object is completely 

inside  or  completely  outside  that  boundary.  If  the  coordinate 

extents of the object are inside all boundaries, we save it. If the 
coordinate extents are outside all boundaries, we discard it. Other- 
wise, we need to apply the intersection calculations. 

 

Viewport Clipping 
 

   Lines and polygon surfaces in a scene can be clipped against the 

viewport boundaries with procedures similar to those used for two 
dimensions, except that objects are now processed against clipping 
planes instead of clipping edges. 

 

   The two-dimensional concept of region codes can be extended to 

three dimensions by considering positions in front and in back of 
the three-dimensional viewport, as well as positions that are left, 

right, below, or above the volume. For three dimensionalpoints, we 
need to expand the region code to six bits. Each point in the 
description of a scene is then assigned a six-bit region code that 

identifies the relative position of the point with respect to the 
viewport. 

 

   For a line endpoint at position (x, y, z), we assign the bit positions 

in the region code from right to left as 
 

bit 1 = 1, if x < xvmin(left) 

bit 2 = 1, if x > xvmax(right) 

bit 3 = 1, if y < yvmin(below) 

bit 4 = 1, if y > yvmax(above) 

bit 5 = 1, if z <zvmin(front) 

bit 6 = 1, if z > zvmax(back)
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   For example, a region code of 101000 identifies a point as above 

and behind the viewport, and the region code 000000 indicates a 
point within the volume. 

   A line segment can immediately identified as completely within the 

viewport if both endpoints have a region code of 000000. If either 
endpoint of a line segment does not have a region code of 000000, 
we perform the logical and operation on the two endpoint codes. 
The result of this and operation will be nonzero for any line 
segment that has both endpoints in one of the six outside regions. 

 

   As in two-dimensional line clipping, we use the calculated 

intersection of a line with a viewport plane to determine how much 
of the line can be thrown away. 

 

 

   The two-dimensional parametric clipping methods of Cyrus-Beck 
or Liang-Barsky can be extended to three-dimensional scenes. For 

a line segment with endpoints P1  = (x1, y1, z1,) and P2  = (x2, y2, 

z2), we can write the parametric line equations as 
 

x = x1 + (x2  - x1)u             0<=u <=1 

y = y1 + (y2  - y1)u 

z= z1 + (z2  - z1)u           -------------( 1 ) 
 

 
 

   Coordinates (x, y, z) represent any point on the line between the 
two endpoints. 

 

   At u = 0, we have the point PI, and u = 1 puts us at P2. 
 

   To find the intersection of a line with a plane of the viewport, we 

substitute the coordinate value for that plane into the appropriate 
parametric expression of Eq.1 and solve for u. For instance, 

suppose we are testing a line against the zvmin, plane of the 
viewport. Then 

 

u= zvmin  – z1   
 

z2 – z1                   ---------------------------- ( 2 ) 
 

 
 

   When the calculated value for u is not in the range from 0 to 1, 

the line segment does not intersect the plane under consideration 
at any point between endpoints P1  and P2 (line A in fig). 

 

    If the calculated value for u in Eq.2  is in the interval from 0 to 

1, we calculate the intersection's x and y coordinates as 

x1 = x1 + ( x2 – x1)         zvmin – z1 

z2 – z1
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y1 = y1 + ( y2 – y1)         zvmin – z1 
 

z2 – z1 
 

   If either x1  or y1  is not in the range of the boundaries of the 

viewport, then this line intersects the front plane beyond the 
boundaries of the volume (line B in Fig.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.7 Three Dimensional Viewing Functions 
 

1. With parameters specified in world coordinates, elements of the 

matrix  for  transforming  world  coordinate  descriptions  to  the 
viewing reference frame are calculated using the function. 

 

EvaluateViewOrientationMatrix3(x0,y0,z0,xN,yN,zN,xV,yV,zV,error,vi 
ewMatrix) 

 

- This function creates the viewMatrix from input coordinates 

defining the viewing system. 
 

-    Parameters x0,y0,z0 specify the sign of the viewing system. 
 

- World coordinate vector (xN, yN, zN) defines the normal  to 

the view plane and the direction of the positive zv  viewing 
axis. 

 

- The world coordinates (xV, yV, zV) gives the elements of the 

view up vector. 
 

- An integer error code is generated in parameter error if input 

values are not specified correctly. 
 

2. The matrix proj matrix for transforming viewing coordinates to 
normalized projection coordinates is created with the function. 

 

EvaluateViewMappingMatrix3 

(xwmin,xwmax,ywmin,ywmax,xvmin,xvmax,yvmin,yvmax,zvmin,zv 
max, 

projType,xprojRef,yprojRef,zprojRef,zview,zback,zfront,error,projMa 
trix)
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- Window  limits  on  the  view  plane  are  given  in  viewing 

coordinates with parameters xwmin, xwmax, ywmin and 
ywmax. 

 

- Limits of the 3D view port within the unit cube are set with 

normalized coordinates xvmin, xvmax, yvmin, yvmax, zvmin 

and zvmax. 
 

- Parameter projType is used to choose the projection type 

either parallel or perspective. 
 

- Coordinate  position  (xprojRef,  yprojRdf,  zprojRef)  sets  the 

projection reference point. This point is used as the center of 
projection if projType is set to perspective; otherwise, this 

point and the center of the viewplane window define the 
parallel projection vector. 

 

- The position of the viewplane along the viewing zv axis is set 
with parameter z view. 

 

- Positions along the viewing zv  axis for the front and back 

planes of the view volume are given with parameters z front 

and z back. 
 

- The error parameter returns an integer error code indicating 
erroneous input data. 

 

2.8VISIBLE SURFACE IDENTIFICATION 
 

A major consideration in the generation of realistic 

graphics displays is identifying those parts of a scene that are 
visible from a chosen viewing position. 

 

2.8.1 Classification of Visible Surface Detection Algorithms 
 

These are classified into two types based on whether 
they deal with object definitions directly or with their 
projected images 

 

1. Object space methods: compares objects and parts of objects 
to each other within the scene definition to determine which 
surfaces as  a whole we should label as visible. 

 

2. Image space methods: visibility is decided point by point at each 
pixel position on the projection plane. Most Visible Surface 
Detection Algorithms use image space methods. 

 

2.8.2 Back Face Detection 
 

A point (x, y,z) is "inside" a polygon surface with plane 
parameters A, B, C, and D if 

 

Ax + By + Cz + D < 0       ----------------(1 ) 
 

 
 

When an inside point is along the line of sight to the surface, 
the polygon must be a back face .
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We can simplify this test by considering the normal vector N 
to a polygon surface, which has Cartesian components (A, B, C). In 
general, if V is a vector in the viewing direction from the eye 

position, as shown in Fig., 
 

 
 

 
 

 
then this polygon is a back face if V . N > 0 

 

Furthermore, if object descriptions have been converted to 
projection coordinates and our viewing direction is parallel to the 

viewing zv. axis, then V = (0, 0, Vz) and V . N = VzC so that we only need 
to consider the sign of C, the ; component of the normal vector N. 

 

In a right-handed viewing system with viewing direction along the 

negative zv axis in the below Fig.  the polygon is a back face if C < 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus, in general, we can label any polygon as a back face if its normal 
vector has a z component value 

 

C<= 0 
 

By examining parameter C for the different planes defining an 
object, we can immediately identify all the back faces. 

 

2.8.3 Depth Buffer Method 
 

A commonly used image-space approach to detecting visible 

surfaces is the depth-buffer method, which compares surface depths at 
each pixel position on the projection plane. This procedure is also 

referred to as the z-buffer method. 
 

Each surface of a scene is processed separately, one point at a
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time across the surface. The method is usually applied to scenes 
containing only polygon surfaces, because depth values can be computed 
very quickly and the method is easy to implement. But the mcthod can 
be applied to nonplanar surfaces. 

 

With object descriptions converted to projection coordinates, each 
(x, y, z) position on a polygon surface corresponds to the orthographic 

projection point (x, y) on the view plane. 
 

Therefore, for each pixel position (x, y) on the view plane, object 
depths can be compared by comparing z values. The figure shows 

 

three surfaces at varying distances along the orthographic projection line 

from position (x,y ) in a view plane taken as the (xv,yv) plane. Surface S1, 
is closest at this position, so its surface intensity value at (x, y) is saved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We can implement the depth-buffer algorithm in normalized 

coordinates, so that z values range from 0 at the back clipping plane to 

Zmax at the front clipping plane. 
 

Two buffer areas are required.A depth buffer is used to store depth 
values for each (x, y) position as surfaces are processed, and the refresh 
buffer stores the intensity values for each position. 

 

Initially,all positions in the depth buffer are set to 0 (minimum 
depth), and the refresh buffer is initialized to the background intensity. 

 

 
 

We summarize the steps of a depth-buffer algorithm as follows: 
 

1. Initialize the depth buffer and refresh buffer so that for all buffer 

positions (x, y), 
 

depth (x, y)=0,      refresh(x , y )=Ibackgnd 
 

2. For each position on each polygon surface, compare depth values to 

previously stored values in the depth buffer to determine visibility.
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z 

 

 

   Calculate the depth z for each (x, y) position on the polygon. 

  If z > depth(x, y), then set 

depth ( x, y)=z    ,    refresh(x,y)= Isurf(x, y) 
 

 
 

where Ibackgnd is the value for the background intensity, and Isurf(x, y) 

is the projected intensity value for the surface at pixel position (x,y). 

After all surfaces have been processed, the depth buffer contains 

depth values for the visible surfaces and the refresh buffer contains 

the corresponding intensity values for those surfaces. 

Depth values for a surface position (x, y) are calculated from the 
plane equation for each surface:

 

z  
x      y    D 

C 

 
-----------------------------(1)

 

For any scan line  adjacent horizontal positions across the line 
differ by1, and a vertical y value on an adjacent scan line differs by 1. If 

the depth of position(x, y) has been determined to be z, then the depth z' 
of the next position (x +1, y) along the scan line is obtained from Eq. (1) 

as
 

z' 
 

 
Or     z' 

 

A(x   1)      y    D 

C 

A 

C 

 
-----------------------(2) 
 

 

-----------------------(3)

 

On each scan line, we start by calculating the depth on a left edge 
of the polygon that intersects that scan line in the below fig. Depth 

values at each successive position across the scan line are then 
calculated by Eq. (3). 

 

Scan lines intersecting a polygon surface
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We first determine the y-coordinate extents of each polygon, and 
process the surface from the topmost scan line to the bottom scan line. 
Starting at a top vertex, we can recursively calculate x positions down a 

left edge of the polygon as x' = x - l/m, where m is the slope of the edge. 
 

Depth values down the edge are then obtained recursively as
 

z' 
 A / m   B C 

 
----------------------(4)

 

Intersection positions on successive scan lines along a left polygon edge 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If we are processing down a vertical edge, the slope is infinite and 
the recursive calculations reduce to

 

z' 
 B 

C 

 
-----------------------(5)

 

An alternate approach is to use a midpoint method or Bresenham- 
type algorithm for determining x values on left edges for each scan line. 
Also the method can be applied to curved surfaces by determining depth 

and intensity values at each surface projection point. 
 

For polygon surfaces, the depth-buffer method is very easy to 

implement, and it requires no sorting of the surfaces in a scene. But it 
does require the availability of a second buffer in addition to the refresh 

buffer. 
 

2.8.4 A- BUFFER METHOD 
 

An extension of the ideas in the depth-buffer method is the A- 

buffer method. The A buffer method represents an antialiased, area- 
averaged, accumulation-buffer method developed by Lucasfilm for 
implementation in the surface-rendering system called REYES (an 

acronym for "Renders Everything You Ever Saw").
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A drawback of the depth-buffer method is that it can only find one 
visible surface at each pixel position. The A-buffer method expands 

 

the depth buffer so that each position in the buffer can reference a linked 

list of surfaces. 

Thus, more than one surface intensity can be taken into 
consideration at each pixel position, and object edges can be antialiased. 

 

Each position in the A-buffer has two fields: 
 

1)depth field - stores a positive or negative real number 
 

2)intensity field - stores surface-intensity information or a pointer 
value. 

 

If the depth field is positive, the number stored at that position is 

the depth of a single surface overlapping the corresponding pixel area. 
The intensity field then stores the RCB components of the surface color 
at that point and the percent of pixel coverage, as illustrated in Fig.A 

 

 
 

If the depth field is negative, this indicates multiple-surface 
contributions to the pixel intensity. The intensity field then stores a 
pointer to a linked Iist of surface data, as in Fig. B. 

 

Organization of an A-buffer pixel position (A) single surface 
overlap of the corresponding pixel area (B) multiple surface 

overlap 
 
 
 
 
 
 
 
 
 
 
 
 

 

Data for each surface in the linked list includes 
 

   RGB intensity components 
 

   opacity parameter (percent of transparency) 
 

   depth 
 

   percent of area coverage 

  surface identifier 

   other surface-rendering parameters 

  pointer to next surface 

.
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2.8.5 SCAN-LINE METHOD 
 

This image-space method for removing hidden surfaces is an 

extension of the scan-line algorithm for filling polygon interiors.  As each 
scan line is processed, all polygon surfaces intersecting that line are 
examined to determine which are visible. Across each scan line, depth 

calculations are made for each overlapping surface to determine which is 
nearest to the view plane. When the visible surface has been determined, 

the intensity value for that position is entered into the refresh buffer. 
 

 
 

We assume that tables are set up for the various surfaces, which include 
both an edge table and a polygon table. The edge table contains 
coordinate endpoints for each line in-the scene, the inverse slope of each 

 

line, and pointers into the polygon table to identify the surfaces bounded 
by each line. 

 

The polygon table contains coefficients of the plane equation for 
each surface, intensity information for the surfaces, and possibly 

pointers into the edge table. 
 

To facilitate the search for surfaces crossing a given scan line, we 

can set up an active list of edges from information in the edge table. This 
active list will contain only edges that cross the current scan line, sorted 

in order of increasing x. 
 

In addition, we define a flag for each surface that is set on or off to 
indicate whether a position along a scan line is inside or outside of the 
surface. Scan lines are processed from left to right. At the leftmost 

boundary of a surface, the surface flag is turned on; and at the rightmost 
boundary, it is turned off. 

 

Scan lines crossing the projection of two surfaces S1 and S2 in the 
view plane. Dashed lines indicate the boundaries of hidden 

surfaces 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The figure illustrates the scan-line method for locating visible 
portions of surfaces for pixel positions along the line.
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The active list for scan line 1 contains information from the edge 
table for edges AB, BC, EH, and FG. For positions along this scan line 

between edges AB and BC, only the flag for surface S1 is on. 
 

Therefore no depth calculations are necessary, and intensity 

information for surface S1, is entered from the polygon table into the 
refresh buffer. 

 

Similarly, between edges EH and FG, only the flag for surface S2 is 
on. No other positions along scan line 1 intersect surfaces, so the 

intensity values in the other areas are set to the background intensity. 

For scan lines 2 and 3 , the active edge list  contains edges AD, 

EH, BC, and FG. Along scan line 2 from edge AD to edge EH, only the 
flag for surface S1, is on. But between edges EH and BC, the flags for 
both surfaces are on. 

 

In this interval, depth calculations must be made using the plane 
coefficients for the two surfaces. For this example, the depth of surface 

S1 is assumed to be less than that of S2, so intensities for surface S1, are 
loaded into the refresh buffer until boundary BC is encountered. Then 

the flag for surface S1 goes off, and intensities for surface S2 are stored 
until edge FG is passed. 

 

Any number of overlapping polygon surfaces can be processed with 
this scan-line method. Flags for the surfaces are set to indicate whether 
a position is inside or outside, and depth calculations are performed 
when surfaces overlap. 

 

2.8.6 Depth Sorting Method 
 

Using both image-space and object-space operations, the depth- 
sorting method performs the following basic functions: 

 

1. Surfaces are sorted in order of decreasing depth. 
 

2. Surfaces are scan converted in order, starting with the surface of 

greatest depth. 
 

Sorting operations are carried out in both image and object space, 
and the scan conversion of the polygon surfaces is performed in image 

space. 
 

This method for solving the hidden-surface problem is often 
referred to as the painter's algorithm. In creating an oil painting, an 
artist first paints the background colors. Next, the most distant objects 

are added, then the nearer objects, and so forth. At the final step, the 
foreground objects are painted on the canvas over the background and 
other objects that have been painted on the canvas. Each layer of paint 

covers up the previous layer. 
 

Using a similar technique, we first sort surfaces according to their 
distance from the view plane. The intensity values for the farthest surface 
are then entered into the refresh buffer. Taking each succeeding surface
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in turn we "paint" the surface intensities onto the frame buffer over the 
intensities of the previously processed surfaces. 

 

Painting polygon surfaces onto the frame buffer according to depth 
is carried out in several steps. Assuming we are viewing along the-z 
direction, 

 

1.surfaces are ordered on the first pass according to the smallest z 
value on each surface. 

 

2.Surfaces with the greatest depth is then compared to the other 

surfaces in the list to determine whether there are any overlaps in depth. 
If no depth overlaps occur, S is scan converted. Figure  shows two 

surfaces that overlap in the xy plane but have no depth overlap. 
 

3.This process is then repeated for the next surface in the list. As 
long as no overlaps occur, each surface is processed in depth order until 

all have been scan converted. 
 

4. If a depth overlap is detected at any point in the list, we need to 

make some additional comparisons to determine whether any of the 
surfaces should be reordered.Two surfaces with no depth overlap 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We make the following tests for each surface that overlaps with S. If 
any one of these tests is true, no reordering is necessary for that surface. 

The tests are listed in order of increasing difficulty. 
 

1. The bounding rectangles in the xy plane for the two surfaces do not 
overlap 

 

2. Surface S is completely behind the overlapping surface relative to the 
viewing position. 

 

3. The overlapping surface is completelv in front of S relative to the 
viewing position. 

 

4. The projections of the two surfaces onto the view plane do not overlap. 
 

 
 

Test 1 is performed in two parts. We first check for overlap in the x 
direction,then we check for overlap in the y direction. If either of these 

directions show no overlap, the two planes cannot obscure one other. An
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example of two surfaces that overlap in the z direction but not in the x 
direction is shown in Fig. 

 

 
 

 

We can perform tests 2 and 3 with an "inside-outside" polygon test. 
That is,we substitute the coordinates for all vertices of S into the plane 

equation for the overlapping surface and check the sign of the result. If 
the plane equations are setup so that the outside of the surface is toward 
the viewing position, then S is behind S' if all vertices of S are "inside" S' 

 

Surface S is completely behind (inside) the overlapping surface S’ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Similarly, S' is completely in front of S if all vertices of S are 
"outside" of S'. Figure shows an overlapping surface S' that is completely 
in front of S, but surface S is not completely inside S’.
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Overlapping surface S’ is completely in front(outside) of 
surface S but s is not completely behind S’ 

 

 
 

If tests 1 through 3 have all failed, we try test 4 by checking for 

intersections between the bounding edges of the two surfaces using line 
equations in the xy plane. As demonstrated in Fig., two surfaces may or 

may not intersect even though their coordinate extents overlap in the x, 
y, and z directions. 

 

Should all four tests fail with a particular overlapping surface S', we 
interchange surfaces S and S' in the sorted list. 

 

 
 

Two surfaces with overlapping bounding rectangles in the xy 
plane 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.8.7 BSP-Tree Method 
 

A binary space-partitioning (BSP) tree is an efficient method for 

determining object visibility by painting surfaces onto the screen from 
back to front, as in the painter's algorithm. The BSP tree is particularly
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useful when the view reference point changes, but the objects in a scene 
are at fixed positions. 

 

Applying a BSP tree to visibility testing involves identifying 

surfaces that are "inside" and "outside" the partitioning plane at each 
step of the space subdivision, relative to the viewing direction. The 
figure(a)  illustrates the basic concept in this algorithm. 

A region of space (a) is partitioned with two planes P1 and P2 to form the 

BSP tree representation in (b) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

With plane P1,we first partition the space into two sets of objects. 

One set of objects is behind, or in back of, plane P1, relative to the 

viewing direction, and the other set is in front of P1. Since one object is 

intersected by plane P1, we divide that object into two separate objects, 
labeled A and B. 

 

Objects A and C are in front of P1 and objects B and D are behind 

P1. We next partition the space again with plane P2 and construct the 
binary tree representation shown in Fig.(b). 

 

In this tree, the objects are represented as terminal nodes, with 
front objects as left branches and back objects as right branches. 

 

2.8.8 Area – Subdivision Method 
 

This technique for hidden-surface removal is essentially an image- 
space method ,but object-space operations can be used to accomplish 
depth ordering of surfaces. 

 

The area-subdivision method takes advantage of area coherence in 
a scene by locating those view areas that represent part of a single 
surface. We apply this method by successively dividing the total viewing
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area into smaller and smaller rectangles until each small area is the 
projection of part of a single visible surface or no surface at all. 

 

To implement this method, we need to establish tests that can 

quickly identify the area as part of a single surface or tell us that the 
area is too complex to analyze easily. Starting with the total view, we 
apply the tests to determine whether we should subdivide the total area 

into smaller rectangles. If the tests indicate that the view is sufficiently 
complex, we subdivide it. Next. we apply the tests to each of the smaller 
areas, subdividing these if the tests indicate that visibility of a single 
surface is still uncertain. We continue this process until the subdivisions 

are easily analyzed as belonging to a single surface or until they are 

reduced to the size of a single pixel. An easy way to do this is to 
successively divide the area into four equal parts at each step. 

 

Tests to determine the visibility of a single surface within a 

specified area  are made by comparing surfaces to the boundary of the 
area. There are four possible relationships that a surface can have with a 
specified area boundary. We can describe these relative surface 

characteristics in the following way (Fig. ): 
 

   Surrounding surface-One that completely encloses the area. 
 

   Overlapping surface-One that is partly inside and partly outside 
the area. 

 

   Inside surface-One that is completely inside the area. 
 

   Outside surface-One that is completely outside the area. 
 

Possible relationships between polygon surfaces and a rectangular 
area 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The tests for determining surface visibility within an area can be 
stated in terms of these four classifications. No further subdivisions of a 

specified area are needed if one of the following conditions is true: 
 

1. All surfaces are outside surfaces with respect to the area. 
 

2. Only one inside, overlapping, or surrounding surface is in the area. 
 

3. A surrounding surface obscures all other surfaces within the area 

boundaries.
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Test 1 can be carrieded out by checking the bounding rectangles 
of all surfaces against the area boundaries. 

 

Test 2 can also use the bounding rectangles in the xy plane to 
identify an inside surface 

 

One method for implementing test 3 is to order surfaces according 

to their minimum depth from the view plane. For each surrounding 
surface, we then compute the maximum depth within the area under 
consideration. If the maximum depth of one of these surrounding 

surfaces is closer to the view plane than the minimum depth of all other 
surfaces within the area, test 3 is satisfied. 

 

Within a specified area a surrounding surface with a maximum 

depth of Zmax obscures all surfaces that have a minimum depth 

beyond Zmax 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Another method for carrying out test 3 that does not require depth 
sorting is to use plane equations to calculate depth values at the four 
vertices of the area for all surrounding, overlapping, and inside surfaces, 
If the calculated depths for one of the surrounding surfaces is less than 

the calculated depths for all other surfaces, test 3 is true. Then the area 
can be filled with the intensity values of thesurrounding surface. 

 

For some situations, both methods of implementing test 3 will fail 

to identify correctly a surrounding surface that obscures all the other 
surfaces. It is faster to subdivide the area than to continue with more 

complex testing. 
Once outside and surrounding surfaces have been identified for an 

area, they will remain outside and surrounding surfaces for all 
subdivisions of the area. Furthermore, some inside and overlapping 
surfaces can be expected to be eliminated as the subdivision process 

continues, so that the areas become easier to analyze. 
In the limiting case, when a subdivision the size of a pixel is 

produced, we simply calculate the depth of each relevant surface at that
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point and transfer the intensity of the nearest surface to the frame 
buffer. 

As a variation on the basic subdivision process, we could subdivide 
areas  along surface boundaries instead of dividing them in half. The 
below Figure  illustrates this method for subdividing areas. The 

projection of the boundary of surface S is used to partition the original 

area into the subdivisions A1 and A2. Surface S is then a surrounding 

surface for A1, and visibility tests 2 and 3 can be applied to determine 
whether  further subdividing is necessary. 

In general, fewer subdivisions are required using this approach, 
but more processing is needed to subdivide areas and to analyze the 
relation of surfaces to the subdivision boundaries. 

 

 

Area A is subdivided into A1 and A2, using the boundary of 
surface S on the view plane. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.8.9 OCTREE METHODS 
 

When an octree representation is used for the viewing volume, 

hidden-surface elimination is accomplished by projecting octree nodes 
onto the viewing surface in a front-to-back order. 

In the below Fig.  the front face of a region of space (the side 
toward the viewer) is formed with octants 0, 1, 2, and 3. Surfaces in the 

front of these octants are visible to the viewer. Any surfaces toward the re 
in the back octants (4,5,6, and 7) may be hidden by the front surfaces. 
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Back surfaces are eliminated, for the viewing directionby 

processing data elements in the octree nodes in the order 0, 1, 2,3,4, 5, 
6, 7. 

This results in a depth-first traversal of the octree, so that nodes 
representing octants 0, 1.2, and 3 for the entire region are visited before 

the nodes representing octants 4,5,6, and 7. 
Similarly, the nodes for the front four suboctants of octant 0 

are visited before the nodes for the four back suboctants. The traversal of 
the octree continues in this order for each octant subdivision. 

When a color value is encountered in an octree node, the pixel area 
in the frame buffer corresponding to this node is assigned that color 
value only if no values have previously been stored in this area. In this 

way, only the front colors are loaded into the buffer. Nothing is loaded if 
an area is void. Any node that is found to be completely obscured is 

eliminated from further processing, so that its subtrees are not accessed. 
Different views of objects represented as octrees can be obtained 

by applying transformations to the octree representation that reorient the 
object according to the view selected. 

 
A method for displaying an octree is first to map the octree onto a 

quadtree of visible areas by traversing octree nodes from front to back in 
a recursive procedure. Then the quadtree representation for the visible 

surfaces is loaded into the frame buffer.  The below Figure  depicts the 
octants in a region of space and the corresponding quadrants on the 

view plane. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

View Plane 
 

 
 

Contributions to quadrant 0 come from octants 0 and 4. Color 
values in quadrant 1 are obtained from surfaces in octants1 and 5, and 

values in each of the other two quadrants are generated from the pair of 
octants aligned with each of these quadrants. 

In most cases, both a front and a back octant must be considered 

in determining the correct color values for a quadrant. But if the front 
octant is homogeneously filled with some color, we do not process the
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back octant. If the front is empty the, the rear octant is processed. 
Otherwise, two ,.recursive calls are made, one for the rear octant and one 
for the front octant. 
typedef enum ( SOLID, MIXED } Status; 
bdefine EMPTY -1 

typedef struct tOctree ( 
int id; 
Status status; 
union ( 
int color; 

struct tOctree  *children[8]: 
) data; 
}Octree: 

typedef struct tQuadtree i 
int id: 
Status status; 
union [ 
int color; 
struct tQuadtree *children[4]; 
) data; 
) Quadtree; 

int nQuadtree = 0. 
void octreeToQuadtree (Octree  *oTree. Quadtree *qTree) 

( 

Octree  *front. *back: 
Quadtree  *newQuadtree; 

int i, j; 
if (oTree->status == SOLID) ( 

qTree->status = SOLID: 
qTree->data.color = oTree->data color: 
return: 
) 
qTree->status = MIXED: 
/*Fill in each quad of the quadtree *I 
for ( i = O ; i<4; i++) 
{ 

front = oTree->data.children[il; 
back = oTree->data..children[i+4]; 
newQuadtree = (Quadtree *) malloc (sizeof (Quadtree)): 

newQuadtree->id = nQuadtree++; 
newQuadtree->status = SOLID; 
qTree->data.childrenIil = newQuadtree; 
if (front->status == SOLID) 
if (front->data.color != EMPTY) 

qTree->data.children[i]->data.color = front->data.color; 
else 

if (back->status == SOLID) 
if (back->data.color != EMPTY) 
qTree->data.children[i]->data.color = back->data.color;
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else 
qTree->data.children[il->data.color = EMPTY; 

else ( / * back node is mixed * / 
newQuadtree->status = MIXED; 
octreeToQuadtree (back, newguadtree); 

octreeToQuadtree (front, newQuadtree): 
} 

} 
} 

 
2.8.10 RAY CASTING METHOD 

 
If we consider the line of sight from a pixel position on the view 

plane through a scene, as in the Fig. below, we can determine which 
objects in the scene  intersect this line. 

After calculating all ray-surface intersections, we identify the 
visible surface as the one whose intersection point is closest to the pixel. 
This visibility detection scheme uses ray-casting procedures. 

Ray casting, as a visibility detection tool, is based on geometric 

optics methods, which trace the paths of light rays. Since there are an 
infinite number of light rays in a scene and we are interested only in 

those rays that pass through pixel positions, we can trace the light-ray 
paths backward from the pixels through the scene. 

The ray-casting approach is an effective visibility-detection method 
for scenes with curved surfaces, particularly spheres. 

A ray along a line of sight from a pixel position through a scene 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We can think of ray casting as a variation on the depth-buffer 
method . In the depth-buffer algorithm, we process surfaces one at a 
time and calculate depth values for all projection points over the surface. 

The calculated surface depths are then compared to previously stored 
depths to determine visible surfaces at each pixel. 

In ray casting, we process pixels one at a time and calculate 

depths for all surfaces along the projection path to that pixel. Ray casting 
is a special case of ray-tracing algorithms that trace multiple ray paths 

to pick up global reflection and refraction contributions from 
multiple objects in a scene. With ray casting, we only follow a ray out 
from each pixel to the nearest object.
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2.8.11 Curved Surfaces 
 

Effective methods for determining visibility for objects with curved 

surfaces include ray-casting and octree methods. 
With ray casting, we calculate ray-surface intersections and locate 

the smallest intersection distance along the pixel ray. 

With octree, once the representation has been established from the 

input definition of the objects, all visible surfaces are identified with the 
same processing procedures. 

No special considerations need be given to different kinds of curved 
surfaces. We can also approximate a curved surface as a set of plane, 
polygon surfaces and use one of the other hidden-surface methods.With 

some objects, such as spheres, it can be more efficient as well as more 

accurate to use ray casting and the curved-surface equation. 
Curved-Surface Representations 

We can represent a surface with an implicit equation of the form 
f(x, y, z) = 0 or with a parametric representation . 

Spline surfaces, for instance, are normally described with 
parametric equations. 

In some cases, it is useful to obtain an explicit surface equation, 
as, for example, a height function over an xy ground plane: 

z=f(x,y) 

Many objects of interest, such as spheres, ellipsoids, cylinders, and 
cones, have quadratic representations. 

Scan-line  and  ray-casting  algorithms  often  involve  numerical 

approximation   techniques   to   solve   the   surface   equation   at   the 
intersection  point  with  a  scan  line  or  with  a  pixel  ray.  Various 
techniques,    including    parallel    calculations    and    fast    hardware 

implementations, have been developed for solving the curved-surface 
equations for commonly used objects. 
Surface Contour Plots 

For many applications in mathematics, physical sciences, 

engineering and other fields, it is useful to display a surface function 
with a set of contour lines that shows the surface shape. The surface 
may be described with an equation or with data tables. 

With an explicit functional representation, we can plot the visible 

surface contour lines and eliminate those contour sections that are 
hidden by the visible parts of the surface. 

To obtain an xy plot of a functional surface, we write the surface 
representation in the form 

y=f(x,z)            ----------------(1) 
 

A curve in the xy plane can then be plotted for values of z within 

some selected range, using a specified interval ∆z. Starting with the 
largest value of z, we plot the curves from "front" to "back" and eliminate 

hidden sections. 
We draw the curve sections on the screen by mapping an xy range 

for the function into an xy pixel screen range. Then, unit steps are taken 
in x and the corresponding y value for each x value is determined from 

Eq. (1) for a given value of z.
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One way to identify the visible curve sections on the surface is to 

maintain a list of ymin, and ymax, values previously calculated for the 
pixel x coordinates on the screen. 

As we step from one pixel x position to the next, we check the 

calculated y value against the stored range, ymin, and ymax, for the next 
pixel. 

If ymin<= y<= ymax  that point on the surface is not visible and we 
do not plot it. But if the calculated y value is outside the stored y bounds 
for that pixel, the point is visible. We then plot the point and reset the 
bounds for that pixel. 

 
2.8.12 WireFrame Methods 

When only the outline of an object is to be displayed, visibility tests 

are applied to surface edges. Visible edge sections are displayed, and 

hidden edge sections can either be eliminated or displayed differently 
from the visible edges. For example,hidden edges could be drawn as 
dashed lines. 

Procedures for determining visibility of object edges are referred to 
as wireframe-visibility methods. They are also called visible line 
detection methods or hidden-line detection methods. 

A direct approach to identifying the visible lines in a scene is to 

compare each line to each surface, we now want to determine which 
sections of the lines are hidden by surfaces. 

For each line, depth values are compared to the surfaces to 
determine which line sections are not visible. We can use coherence 
methods to identify hidden line segments without actually testing 

each coordinate position. If both line intersections with the projection of 

a surface boundary have greater depth than the surface at those points, 
the line segment between the intersections is completely hidden, as in 

Fig. (a). 
This is the usual situation in a scene, but it is also possible to have 

lines and surfaces intersecting each other. When a line has greater depth 
at one boundary intersection and less depth than the surface at the 
other boundary intersection, the line must penetrate the surface interior, 

as in Fig. (b). In this case, we calculate the intersection point of the line 

with the surface using the plane equation and display only the visible 
sections. 

Hidden line sections (dashed) for a line that (a) passes behind a 
surface and (b) penetrates a surface 
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Some visible-surface methods are readily adapted to wireframe 

visibility testing. Using a back-face method, we could identify all the back 
surfaces of an object and display only the boundaries for the visible 
surfaces. With depth sorting, surfaces can be painted into the refresh 

buffer so that surface interiors are in the background color, while 
boundaries are in the foreground color. 

By processing the surfaces from back to front, hidden lines are 
erased by the nearer surfaces.An area-subdivision method can be 

adapted to hidden-line removal by displaying only the boundaries of 
visible surfaces. Scan-line methods can be used to display visible lines 
by setting points along the scan line that coincide with boundaries of 

visible surfaces. 
 
2.8.13 VISIBILITY-DETECTION FUNCTIONS 

Often, three-dimensional graphics packages accommodate several 
visible-surface detection procedures, particularly the back-face and 
depth-buffer methods. 

A particular function can then be invoked with the procedure 
name, such as back-Face or depthBuffer. 



CS2401 – Computer Graphics Unit - III 

 1 CSE/IT 

 

 

 

 

UNIT III  - GRAPHICS PROGRAMMING 

 
Color Models – RGB, YIQ, CMY, HSV – Animations – General Computer Animation, 

Raster, Keyframe - Graphics programming using OPENGL – Basic graphics primitives – 

Drawing three dimensional objects - Drawing three dimensional scenes 
 

 

Color Models 
 
Color Model is a method for explaining the properties or behavior of color within some 

particular context. No single color model can explain all aspects of color, so we make use 

of different models to help describe the different perceived characteristics of color. 
 

Properties of Light 
 

  Light is a narrow frequency band within the electromagnetic system. 
 

  Other frequency bands within this spectrum are called radio waves, micro waves, 

infrared waves and x-rays. The below fig shows the frequency ranges for some of 

the electromagnetic bands. 
 

 
 
 
 

  Each frequency value within the visible band corresponds to a distinct color. 
 

  At the low frequency end is a red color (4.3*10
4 

Hz) and the highest frequency is a 

violet color (7.5 *10 
14

Hz) 
 

  Spectral  colors  range  from  the  reds  through  orange  and  yellow  at  the  low 
frequency end to greens, blues and violet at the high end. 
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  Since light is an electro magnetic wave, the various colors are described in terms 
of either the frequency for the wave length λ of the wave. 

 

  The  wave  length  ad  frequency  of  the  monochromatic  wave  are  inversely 

proportional to each other, with the proportionality constants as the speed of light 

C where C = λ f
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  A light source such as the sun or a light bulb emits all frequencies within the 

visible range to produce white light. When white light is incident upon an object, 

some frequencies are reflected and some are absorbed by the object. The 

combination of  frequencies present in the reflected light determines what we 

perceive as the color of the object. 
 

  If low frequencies are predominant in the reflected light, the object is described as 

red. In this case, the perceived light has the dominant frequency at the red end of 

the spectrum. The dominant frequency is also called the hue, or simply the color of 

the light. 
 

  Brightness is another property, which in the perceived intensity of the light. 
 

  Intensity in the radiant energy emitted per limit time, per unit solid angle, and per 
unit projected area of the source. 

 

  Radiant energy is related to the luminance of the source. 

  The next property in the purity or saturation of the light. 

-    Purity describes how washed out or how pure the color of the light appears. 
 

-    Pastels and Pale colors are described as less pure. 
 

  The term chromaticity is used to refer collectively to the two properties, purity and 
dominant frequency. 

 
  Two different color light sources with suitably chosen intensities can be used to 
produce a range of other colors. 

 

  If  the  2  color  sources  combine  to  produce  white  light,  they  are  called 

complementary colors. E.g., Red and Cyan, green and magenta, and blue and 

yellow. 
 

  Color models that are used to describe combinations of light in terms of dominant 

frequency use 3 colors to obtain a wide range of colors, called the color gamut. 
 

  The 2 or 3 colors used to produce other colors in a color model are called primary 
colors. 

 

Standard Primaries 
 

XYZ Color Model
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  The set of primaries is generally referred to as the XYZ or (X,Y,Z) color model 

where X,Y and Z represent vectors in a 3D, additive color space. 
 

  Any color Cλ is expressed as 
 

Cλ = XX + YY + ZZ                     -------------(1) 
 

 

to match Cλ. 
Where X,Y and Z designates the amounts of the standard primaries needed

 

  It is convenient to normalize the amount in equation (1) against luminance         (X 
+ Y+ Z). Normalized amounts are calculated as, 

 

x = X/(X+Y+Z),      y = Y/(X+Y+Z),      z = Z/(X+Y+Z) 
 

with x + y + z = 1 
 

  Any color can be represented with just the x and y amounts. The parameters x and 
y are called the chromaticity values because they depend only on hue and purity. 

 
  If we specify colors only with x and y, we cannot obtain the amounts X, Y and Z. 
so, a complete description of a color in given with the 3 values x, y and Y. 

X = (x/y)Y,              Z = (z/y)Y 

Where z = 1-x-y. 
 

Intuitive Color Concepts 
 

  Color paintings can be created by mixing color pigments with white and black 
pigments to form the various shades, tints and tones. 

 

  Starting with the pigment for a „pure color‟ the color is added to black pigment to 
produce different shades. The more black pigment produces darker shades. 

 
  Different tints of the color are obtained by adding a white pigment to the original 

color, making it lighter as more white is added. 
 

  Tones of the color are produced by adding both black and white pigments. 
 

RGB Color Model 
 

  Based on the tristimulus theory of version, our eyes perceive color through the 

stimulation of three visual pigments in the cones on the retina.
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  These visual pigments have a peak sensitivity at wavelengths of about 630 nm (red), 
530 nm (green) and 450 nm (blue). 

 

  By comparing intensities in a light source, we perceive the color of the light. 
 

  This is the basis for displaying color output on a video monitor using the 3 color 

primaries, red, green, and blue referred to as the RGB color model. It is represented 

in the below figure. 
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  The sign represents 

black, and the vertex with coordinates (1,1,1) in white. 
 

  Vertices of the cube on the axes represent the primary colors, the remaining vertices 
represents the complementary color for each of the primary colors. 

 
  The RGB color scheme is an additive model. (i.e.,) Intensities of the primary colors 
are added to produce other colors. 

 

  Each color point within the bounds of the cube can be represented as the triple 
(R,G,B) where values for R, G and B are assigned in the range from 0 to1. 

 

  The color Cλ is expressed in RGB component as 
 

Cλ = RR + GG + BB 
 

  The magenta vertex is obtained by adding red and blue to produce the triple (1,0,1) 
and white at (1,1,1) in the sum of the red, green and blue vertices. 

 

  Shades of gray are represented along the main diagonal of the cube from the origin 
(black) to the white vertex.
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2.5.5  YIQ Color Model 
 

  The National Television System Committee (NTSC) color model for forming the 
composite video signal in the YIQ model. 

 

  In the YIQ color model, luminance (brightness) information in contained in the Y 

parameter, chromaticity information (hue and purity) is contained into the I and Q 

parameters. 
 

  A combination of red, green and blue intensities are chosen for the Y parameter to 
yield the standard luminosity curve. 

 
  Since Y contains the luminance information, black and white TV monitors use only 
the Y signal. 

 
  Parameter  I  contain  orange-cyan  hue  information  that  provides  the  flash-tone 
shading and occupies a bandwidth of 1.5 MHz. 

 

  Parameter Q carries green-magenta hue information in a bandwidth of about 0.6 
MHz. 

 
  An RGB signal can be converted to a TV signal using an NTSC encoder which 
converts RGB values to YIQ values, as follows 

 
 

Y       0.299 
 

I       0.596 
 

Q      0.212 

0.587 
 

0.275 
 

0.528 

0.144   R 
 

0.321 G 
 

0.311   B
 
 
 

  An NTSC video signal can be converted to an RGB signal using an NTSC encoder 

which separates the video signal into YIQ components, the converts to RCB values, 

as follows: 
 
 

R      1.000 
 

G      1.000 
 

B      1.000 

0.956 
 

0.272 
 

1.108 

0.620   Y 
 

0.647  I 
 

1.705   Q
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CMY Color Model 
 

  A color model defined with the primary colors cyan, magenta, and yellow (CMY) 
in useful for describing color output to hard copy devices. 

 

  It is a subtractive color model (i.e.,) cyan can be formed by adding green and blue 

light. When white light is reflected from cyan-colored ink, the reflected light must 

have no red component. i.e., red light is absorbed or subtracted by the link. 
 

  Magenta  ink  
subtracts  the  green  component  from  incident  light  and  yellow subtracts the 
blue component. 

 

  In CMY model, point 
(1,1,1) represents black because all components of the incident light are subtracted. 
 

  The origin represents white light. 
 

  Equal  amounts  of  each  of  the  primary colors  produce grays  along  the  main 
diagonal of the cube. 

 
  A combination of cyan and magenta ink produces blue light because the red and 
green components of the incident light are absorbed. 

 

  The printing process often used with the CMY model generates a color point with 

a collection of 4 ink dots; one dot is used for each of the primary colors (cyan, 

magenta and yellow) and one dot in black.
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  The conversion from an RGB representation to a CMY representation is expressed 
as 

 

 

C      1     R 

M      1     G 

Y       1     B 
 
 

Where the white is represented in the RGB system as the unit column vector. 
 

 
 

Similarly the conversion of CMY to RGB representation is expressed as 
 

 

R      1      C 

G      1     M 

B      1      Y 
 

 

Where black is represented in the CMY system as the unit column vector. 
 

HSV Color Model 
 

  The HSV model uses color descriptions that have a more interactive appeal to a 

user. 
 

  Color parameters in this model are hue (H), saturation (S), and value (V). 
 

  The 3D representation of the HSV model is derived from the RGB cube. The 
outline of the cube has the hexagon shape. 

 



 1
0 
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  The boundary of the hexagon represents the various hues, and it is used as the top 
of the HSV hexcone. 

 
  In the hexcone, saturation is measured along a horizontal axis, and value is along a 
vertical axis through the center of the hexcone. 

 
  Hue is represented as an angle about the vertical axis, ranging from 0

0  
at red 

through 360
0
. Vertices of the hexagon are separated by 60

0 
intervals. 

 
  Yellow is at 60

0
, 

green at 120
0 

and cyan opposite red at H = 180
0
. Complementary colors are 180

0 

apart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  Saturation S varies from 0 to 1. the maximum purity at S = 1, at S = 0.25, the hue 

is said to be one quarter pure, at S = 0, we have the gray scale. 
 

  Value V varies from 0 at the apex to 1 at the top. 
 

-    the apex representation black. 
 

  At the top of the hexcone, colors have their maximum intensity. 
 

  When V = 1 and S = 1 we have the „pure‟ hues. 
 

White is the point at V = 1 and S = 0.
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HLS Color Model 
 

  HLS model is based on intuitive color parameters used by Tektronix. 
 

  It has the double cone representation shown in the below figure. The 3 parameters 
in this model are called Hue (H), lightness (L) and saturation (s). 
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  Hue 

specifies an angle about the vertical axis that locates a chosen hue.   In 

this model H = θ
0 

corresponds to Blue. 

  The remaining colors are specified around the perimeter of the cone in the same 

order as in the HSV model. 
 

  Magenta is at 60
0
, Red in at 120

0
, and cyan in at H = 180

0
. 

 

  The vertical axis is called lightness (L). At L = 0, we have black, and white is at  L 
= 1 Gray scale in along the L axis and the “purehues” on the L = 0.5 plane. 

 
  Saturation parameter S specifies relative purity of a color. S varies from 0 to 1 

pure hues are those for which S = 1 and L = 0.5
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-    As S decreases, the hues are said to be less pure. 
 

-    At S= 0, it is said to be gray scale. 
 

Animation 
 

  Computer animation refers to any time sequence of visual changes in a scene. 
 

  Computer animations can also be generated by changing camera parameters such 
as position, orientation and focal length. 

 
  Applications  of  computer-generated  animation  are  entertainment,  advertising, 
training and education. 

 

Example : Advertising animations often transition one object shape into another. 
 

Frame-by-Frame animation 
 

Each frame of the scene is separately generated and stored. Later, the frames can be 

recoded on film or they can be consecutively displayed in "real-time playback" mode 
 

Design of Animation Sequences 
 

An animation sequence in designed with the following steps: 

  Story board layout 

  Object definitions 
 

  Key-frame specifications 
 

  Generation of in-between frames. 
 

Story board 
 

  The story board is an outline of the action. 
 

  It defines the motion sequences as a set of basic events that are to take place. 
 

  Depending on the type of animation to be produced, the story board could consist 
of a set of rough sketches or a list of the basic ideas for the motion. 

 

Object Definition 
 

An object definition is given for each participant in the action.
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  Objects can be defined in terms of basic shapes such as polygons or splines. 
 

The associated movements of each object are specified along with the shape. 
 

Key frame 
 

  A key frame is detailed drawing of the scene at a certain time in the animation 

sequence. 
 

  Within each key frame, each object is positioned according to the time for that 

frame. 
 

  Some key frames are chosen at extreme positions in the action; others are spaced 
so that the time interval between key frames is not too much. 

 

In-betweens 
 

  In betweens are the intermediate frames between the key frames. 
 

  The number of in between needed is determined by the media to be used to display 
the animation. 

 
  Film requires 24 frames per second and graphics terminals are refreshed at the rate 
of 30 to 60 frames per seconds. 

 
  Time intervals for the motion are setup so there are from 3 to 5 in-between for 
each pair of key frames. 

 

  Depending on the speed of the motion, some key frames can be duplicated. 

  For a 1 min film sequence with no duplication, 1440 frames are needed. 

  Other required tasks are 
 

-    Motion verification 
 

-    Editing 
 

-    Production and synchronization of a sound track. 
 

General Computer Animation Functions 
 

Steps in the development of an animation sequence are, 
 

1.  Object manipulation and rendering
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2.  Camera motion 
 

3.  Generation of in-betweens 
 

  Animation packages such as wave front provide special functions for designing 
the animation and processing individuals objects. 

 

  Animation packages facilitate to store and manage the object database. 
 

  Object shapes and associated parameter are stored and updated in the database. 
 

  Motion can be generated according to specified constraints using 2D and 3D 
transformations. 

 
  Standard  functions  can  be  applied  to  identify visible  surfaces  and  apply  the 
rendering algorithms. 

 
  Camera movement functions such as zooming, panning and tilting are used for 
motion simulation. 

 
  Given the specification for the key frames, the in-betweens can be automatically 
generated. 

 

Raster Animations 
 

  On raster systems, real-time animation in limited applications can be generated 
using raster operations. 

 
  Sequence of raster operations can be executed to produce real time animation of 
either 2D or 3D objects. 

 
  We   can   animate   objects   along   2D   motion   paths   using   the   color-table 
transformations. 

 

- Predefine the object as successive positions along the motion path, set the 
successive blocks of pixel values to color table entries. 

 

-    Set the pixels at the first position of the object to „on‟ values, and set the 

pixels at the other object positions to the background color. 
 

- The animation is accomplished by changing the color table values so that 

the object is „on‟ at successive positions along the animation path as the 

preceding position is set to the background intensity.
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Computer Animation Languages 
 

  Animation functions include a graphics editor, a key frame generator and standard 

graphics routines. 
 

  The graphics editor allows designing and modifying object shapes, using spline 

surfaces, constructive solid geometry methods or other representation schemes. 
 

  Scene description includes the positioning of objects and light sources defining the 

photometric parameters and setting the camera parameters. 
 

  Action  specification involves  the  layout  of  motion  paths  for  the  objects  and 
camera. 

 
  Keyframe  systems  are  specialized  animation  languages  designed  dimply  to 
generate the in-betweens from the user specified keyframes. 

 

  Parameterized systems allow object motion characteristics to be specified as part 

of the   object   definitions.  The   adjustable   parameters  control   such   object 

characteristics as  degrees of  freedom motion limitations and  allowable shape 

changes. 
 

  Scripting  systems  allow  object  specifications and  animation  sequences  to  be 

defined with a user input script. From the script, a library of various objects and 

motions can be constructed. 
 

Keyframe Systems 
 

  Each set of in-betweens are generated from the specification of two keyframes. 
 

  For complex scenes, we can separate the frames into individual components or 

objects called cells, an acronym from cartoon animation.
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Morphing 
 

  Transformation of object shapes from one form to another is called Morphing. 
 

  Morphing methods can be applied to any motion or transition involving a 
change in shape. The example is shown in the below figure. 

 
 
 
 
 
 

  The general preprocessing rules for equalizing keyframes in terms of either the 

number of vertices to be added to a keyframe.
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  Suppose we  equalize  the  edge  count  and  parameters Lk   and  Lk+1   denote  the 
number of line segments in two consecutive frames. We define, 

 

Lmax = max (Lk, Lk+1) 

Lmin = min(Lk , Lk+1) 

Ne = Lmax mod Lmin 

Ns = int (Lmax/Lmin) 

  The preprocessing is accomplished by 
 

1.  Dividing Ne edges of keyframemin into Ns+1 section. 
 

2.  Dividing the remaining lines of keyframemin into Ns sections. 
 

  For example, if Lk  = 15 and Lk+1  = 11, we divide 4 lines of keyframek+1  into 2 
sections each. The remaining lines of keyframek+1 are left infact. 

 
  If the vector counts in equalized parameters Vk  and Vk+1  are used to denote the 
number of vertices in the two consecutive frames. In this case we define 

 

Vmax =  max(Vk,Vk+1), Vmin = min( Vk,Vk+1)                   and 
 

Nls = (Vmax -1) mod (Vmin – 1) 
 

Np  = int ((Vmax – 1)/(Vmin – 1 )) 
 

  Preprocessing using vertex count is performed by 
 

1.  Adding Np points to Nls line section of keyframemin. 
 

2.  Adding Np-1 points to the remaining edges of keyframemin. 
 

Simulating Accelerations 
 
Curve-fitting techniques are often used to  specify the animation paths between  key 

frames. Given the vertex positions at the key frames, we can fit the positions with linear 

or nonlinear paths. Figure illustrates a nonlinear fit of key-frame positions. This 

determines the trajectories for the in-betweens. To simulate accelerations, we can adjust 

the time spacing for the in-betweens.
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For constant speed (zero acceleration), we use equal-interval time spacing for the in- 

betweens. Suppose we want n in-betweens for key frames at times t1 and t2. 
 
 
 
 
 
 
 

The time interval between key frames is then divided into n + 1 subintervals, yielding an 

in-between spacing of 
 

∆= t2-t1/n+1 
 

we can calculate the time for any in-between as 

tBj = t1+j ∆t,    j = 1,2, . . . . . . n 

Motion Specification 
 

These are several ways in which the motions of objects can be specified in an 
animation system. 

 

Direct Motion Specification 
 

  Here the rotation angles and translation vectors are explicitly given. 
 

  Then the geometric transformation matrices are applied to transform coordinate 
positions.
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curve 

We can approximate the path of a bouncing ball with a damped, rectified, sine 
 

 
 

y (x) = A / sin(ωx + θ0) /e
-kx

 

where A is  the initial amplitude, ω is the angular frequency, θ0 is the phase angle and k is 
the damping constant. 

 

Goal Directed Systems 
 

  We can specify the motions that are to take place in general terms that abstractly 

describe the actions. 
 

  These systems are called goal directed. Because they determine specific motion 

parameters given the goals of the animation. 
 

  Eg., To specify an object to „walk‟ or to „run‟ to a particular distance. 
 

Kinematics and Dynamics 
 

  With a kinematics description, we specify the animation by motion parameters 

(position, velocity and acceleration) without reference to the forces that cause the 

motion. 
 

  For constant velocity (zero acceleration) we designate the motions of rigid bodies 
in a scene by giving an initial position and velocity vector for each object.
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  We can specify accelerations (rate of change of velocity ), speed up, slow downs 
and curved motion paths. 

 

  An alternative approach is to use inverse kinematics; where the initial and final 

positions of the object are specified at specified times and the motion parameters 

are computed by the system. 
 

Graphics programming using OPENGL 
 
OpenGL is a software interface that allows you to access the graphics hardware without 

taking care of the hardware details or which graphics adapter is in the system. OpenGL is 

a low-level graphics library specification. It makes available to the programmer a small 

set of geomteric primitives - points, lines, polygons, images, and bitmaps. OpenGL 

provides a set of commands that allow the specification of geometric objects in two or 

three dimensions, using the provided primitives, together with commands that control 

how these objects are rendered (drawn). 

 
Libraries 

 

 
 

    OpenGL Utility Library (GLU) contains several routines that use lower-level 

OpenGL commands to perform such tasks as setting up matrices for specific 

viewing orientations and projections and rendering surfaces. 

    OpenGL Utility Toolkit (GLUT) is a window-system-independent toolkit, written 

by Mark Kilgard, to hide the complexities of differing window APIs. 
 

Include Files 
 
For all OpenGL applications, you want to include the gl.h header file in every file. 

Almost all OpenGL applications use GLU, the aforementioned OpenGL Utility Library, 

which also requires inclusion of the glu.h header file. So almost every OpenGL source 

file begins with: 
 
#include <GL/gl.h> 

#include <GL/glu.h> 
 
If you are using the OpenGL Utility Toolkit (GLUT) for managing your window 

manager tasks, you should include: 
 
#include <GL/glut.h> 

 
The following files must be placed in the proper folder to run a OpenGL Program.
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Libraries (place in the lib\ subdirectory of Visual C++) 
 

opengl32.lib 
glu32.lib 
glut32.lib 

 

Include files (place in the include\GL\ subdirectory of Visual C++) 
 

gl.h 

glu.h 

glut.h 
 

Dynamically-linked libraries (place in the \Windows\System subdirectory) 
 

opengl32.dll 

glu32.dll 

glut32.dll 
 

Working with OpenGL 
 

Opening a window for Drawing 
 
The First task in making pictures is to open a screen window for drawing. The following 

five functions initialize and display the screen window in our program. 
 
1. glutInit(&argc, argv) 

 
The first thing we need to do is call the glutInit() procedure. It should be called before 

any other GLUT routine because it initializes the GLUT library. The parameters to 

glutInit() should be the same as those to main(), specifically main(int argc, char** argv) 

and glutInit(&argc, argv). 
 
2. glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) 

 
The next thing we need to do is call the glutInitDisplayMode() procedure to specify the 
display mode for a window. 

 
We must  first decide whether we want to use an RGBA (GLUT_RGB) or color-index 

(GLUT_INDEX) color model. The RGBA mode stores its color buffers as red, green, 

blue, and alpha color components. Color-index mode, in contrast, stores color buffers in 

indicies.  And  for  special  effects,  such  as  shading,  lighting,  and  fog,  RGBA  mode 

provides more flexibility. In general, use RGBA mode whenever possible. RGBA mode 

is the default.

ftp://ftp.csis.gvsu.edu/wolffe/graphics/lib/opengl32.lib
ftp://ftp.csis.gvsu.edu/wolffe/graphics/lib/glu32.lib
ftp://ftp.csis.gvsu.edu/wolffe/graphics/lib/glu32.lib
ftp://ftp.csis.gvsu.edu/wolffe/graphics/lib/glu32.lib
ftp://ftp.csis.gvsu.edu/wolffe/graphics/include/gl.h
ftp://ftp.csis.gvsu.edu/wolffe/graphics/include/gl.h
ftp://ftp.csis.gvsu.edu/wolffe/graphics/include/gl.h
ftp://ftp.csis.gvsu.edu/wolffe/graphics/include/glut.h
ftp://ftp.csis.gvsu.edu/wolffe/graphics/dll/opengl32.dll
ftp://ftp.csis.gvsu.edu/wolffe/graphics/dll/glu32.dll
ftp://ftp.csis.gvsu.edu/wolffe/graphics/dll/glu32.dll
ftp://ftp.csis.gvsu.edu/wolffe/graphics/dll/glu32.dll
http://www.cs.uccs.edu/~semwal/man.html#glutInit
http://www.cs.uccs.edu/~semwal/man.html#glutInit
http://www.cs.uccs.edu/~semwal/man.html#glutInit
http://www.cs.uccs.edu/~semwal/man.html#glutInit
http://www.cs.uccs.edu/~semwal/man.html#glutInitDisplayMode
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Another decision we need to make when setting up the display mode is whether we want 

to use single buffering (GLUT_SINGLE) or double buffering (GLUT_DOUBLE). If we 

aren't using annimation, stick with single buffering, which is the default. 
 
3. glutInitWindowSize(640,480) 

 
We need to create the characteristics of our window. A call to glutInitWindowSize() will 

be used to specify the size, in pixels, of our inital window. The arguments indicate the 

height and width (in pixels) of the requested window. 
 
4. glutInitWindowPosition(100,15) 

 
Similarly, glutInitWindowPosition() is used to specify the screen location for the upper- 

left corner of our initial window. The arguments, x and y, indicate the location of the 

window relative to the entire display. This function positioned the screen 100 pixels over 

from the left edge and 150 pixels down from the top. 
 
5. glutCreateWindow(“Example”) 

 
To   create a window, the with the previously set characteristics (display mode, size, 

location, etc), the programmer uses the glutCreateWindow() command. The command 

takes a string as a parameter which may appear in the title bar. 
 
6. glutMainLoop() 

 
The window is not actually displayed until the glutMainLoop() is entered. The very last 
thing is we have to call this function 

 
Event Driven Programming 

 
The method of associating a call back function with a particular type of event is called as 
event driven programming. OpenGL provides tools to assist with the event management. 

 
There are four Glut functions available 

 
1. glutDisplayFunc(mydisplay) 

 
The glutDisplayFunc() procedure is the first and most important event callback function. 

A callback function is one where a programmer-specified routine can be registered to be 

called in response to a specific type of event. For example, the argument of 

glutDisplayFunc(mydisplay) is the function that is called whenever GLUT determines 

that the contents of the window needs to be redisplayed. Therefore, we should put all the 

routines that you need to draw a scene in this display callback function.

http://www.cs.uccs.edu/~semwal/man.html#glutInitWindowSize
http://www.cs.uccs.edu/~semwal/man.html#glutInitWindowPosition
http://www.cs.uccs.edu/~semwal/man.html#glutCreateWindow
http://www.cs.uccs.edu/~semwal/man.html#glutMainLoop
http://www.cs.uccs.edu/~semwal/man.html#glutDisplayFunc
http://www.cs.uccs.edu/~semwal/man.html#glutDisplayFunc
http://www.cs.uccs.edu/~semwal/man.html#glutDisplayFunc
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2. glutReshapeFunc(myreshape) 
 
The glutReshapeFunc() is a callback function that specifies the function that is called 

whenever the window is resized or moved. Typically, the function that is called when 

needed by the reshape function displays the window to the new size and redefines the 

viewing characteristics as desired. 
 
3. glutKeyboardFunc(mykeyboard) 

 
GLUT interaction using keyboard inputs is handled. The command glutKeyboardFunc() 

is used to run the callback function specified and pass as parameters, the ASCII code of 

the pressed key, and the x and y coordinates of the mouse cursor at the time of the event. 
 
Special keys can also be used as triggers. The key passed to the callback function, in this 
case, takes one of the following values (defined in glut.h). 

 
Special keys can also be used as triggers. The key passed to the callback function, in this 
case, takes one of the following values (defined in glut.h). 

 
 

GLUT_KEY_UP 

GLUT_KEY_RIGHT 

GLUT_KEY_DOWN 

GLUT_KEY_PAGE_UP 

GLUT_KEY_PAGE_DOWN 

GLUT_KEY_HOME 

GLUT_KEY_END 

GLUT_KEY_INSERT 

 

Up Arrow 

Right Arrow 

Down Arrow 

Page Up 
Page Down 
Home 

End 

Insert
 

 

4. glutMouseFunc(mymouse) 

 
GLUT supports interaction with the computer mouse that is triggered when one of the 

three typical buttons is presses. A mouse callback fuction can be initiated when a given 

mouse button is pressed or released. The command glutMouseFunc() is used to specify 

the callback function to use when a specified button is is a given state at a certain 

location.  This  buttons  are  defined  as  either  GL_LEFT_BUTTON, 

GL_RIGHT_BUTTON, or GL_MIDDLE_BUTTON and the states for that button are 

either GLUT_DOWN (when pressed) or GLUT_UP (when released). Finally, x and y 

callback parameters indicate the location (in window-relative coordinates) of the mouse 
at the time of the event.

http://www.cs.uccs.edu/~semwal/man.html#glutReshapeFunc
http://www.cs.uccs.edu/~semwal/man.html#glutKeyboardFunc
http://www.cs.uccs.edu/~semwal/man.html#glutMouseFunc
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Example : Skeleton for OpenGL Code 
 
int main(int argc, char** argv) 

{ 
glutInit(&argc, argv); 
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); 

glutInitWindowSize(465, 250); 

glutInitWindowPosition(100, 150); 

glutCreateWindow("My First Example"); 

glutDisplayFunc(mydisplay); 

glutReshapeFunc(myreshape); 

glutMouseFunc(mymouse); 

glutKeyboardFunc(mykeyboard); 

myinit(); 

glutMainLoop(); 

return 0; 
} 

 

 

Basic graphics primitives 
 
OpenGL Provides tools  for  drawing all  the  output primitives such  as  points, lines, 

triangles, polygons, quads etc and it is defined by one or more vertices. 

 
To draw such objects in OpenGL we pass it a list of vertices. The list occurs between the 

two OpenGL function calls glBegin() and glEnd().  The argument of glBegin() determine 

which object is drawn. 

These functions are 

glBegin(int mode); 
glEnd( void ); 

The parameter mode of the function glBegin can be one of the following: 

GL_POINTS 

GL_LINES 

GL_LINE_STRIP 

GL_LINE_LOOP 

GL_TRIANGLES 

GL_TRIANGLE_STRIP 

GL_TRIANGLE_FAN 

GL_QUADS
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GL_QUAD_STRIP 

GL_POLYGON 
 

 

glVertex( ) : The main function used to draw objects is named as glVertex. This function 
defines a point (or a vertex) and it can vary from receiving 2 up to 4 coordinates. 

 

 

Format of glVertex Command 
 

When we wish to refer the basic command without regard to the specific arguments and 

datatypes it is specified as 

 
glVertex*(); 

 

 

Example 

 
 
 

//the following code plots three dots 
 
glBegin(GL_POINTS); 

glVertex2i(100, 50); 

glVertex2i(100, 130); 

glVertex2i(150, 130); 

glEnd( ); 
 

 

// the following code draws a triangle 
 
glBegin(GL_TRIANGLES); 

glVertex3f(100.0f, 100.0f, 0.0f); 

glVertex3f(150.0f, 100.0f, 0.0f); 

glVertex3f(125.0f, 50.0f, 0.0f); 

glEnd( ); 
 
// the following code draw a lines 

 
glBegin(GL_LINES); 

glVertex3f(100.0f, 100.0f, 0.0f); // origin of the line 

glVertex3f(200.0f, 140.0f, 5.0f); // ending point of the line 

glEnd( ); 
 
OpenGl State 

 
OpenGl keeps track of many state variables, such as current size of a point, the current 

color of a drawing, the current background color, etc. 
 
The value of a state variable remains active until new value is given. 
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glPointSize() : The size of a point can be set with glPointSize(), which takes one floating 

point argument 
 
Example :   glPointSize(4.0); 

 
glClearColor() : establishes what color the window will be cleared to.  The background 

color is set with glClearColor(red, green, blue, alpha), where alpha 

specifies a degree of transparency 

 
Example : glClearColor (0.0, 0.0, 0.0, 0.0); //set black background color
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glClear() :   To clear the entire window to the background color, we use glClear 

(GL_COLOR_BUFFER_BIT). The  argument  GL_COLOR_BUFFER_BIT is  another 

constant built into OpenGL 

 
Example : glClear(GL_COLOR_BUFFER_BIT) 

 
glColor3f() : establishes to use for drawing objects. All objects drawn after this point use 

this color, until it‟s changed with another call to set the color. 
 

 

Example: 
 
glColor3f(0.0, 0.0, 0.0);                            //black 

glColor3f(1.0, 0.0, 0.0);                            //red 

glColor3f(0.0, 1.0, 0.0);                            //green 

glColor3f(1.0, 1.0, 0.0);                            //yellow 

glColor3f(0.0, 0.0, 1.0);                            //blue 

glColor3f(1.0, 0.0, 1.0);                            //magenta 

glColor3f(0.0, 1.0, 1.0);                            //cyan 

glColor3f(1.0, 1.0, 1.0);                            //white 

 
gluOrtho2D(): specifies the coordinate system in two dimension 

void gluOrtho2D (GLdouble left, GLdouble right, GLdouble bottom,GLdouble top); 

 
Example :  gluOrtho2D(0.0, 640.0, 0.0, 480.0); 

 
glOrtho() : specifies the coordinate system in three dimension 

 
Example : glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0); 

 
glFlush() :  ensures that the drawing commands are actually executed rather than stored 

in a buffer awaiting (ie) Force all issued OpenGL commands to be executed 
 
glMatrixMode(GL_PROJECTION) : For orthographic projection 

 
glLoadIdentity() : To load identity matrix 

 

 

glShadeModel : Sets the shading model. The mode parameter can be either 
GL_SMOOTH (the default) or GL_FLAT. 

 
void glShadeModel (GLenum mode);
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With flat shading, the color of one particular vertex of an independent primitive is 

duplicated  across  all  the  primitive‟s vertices  to  render  that  primitive.  With  smooth 

shading, the color at each vertex is treated individually. 

 
Example : OpenGL Program to draw three dots (2-Dimension) 

 
#include "stdafx.h" 
#include "gl/glut.h" 
#include <gl/gl.h> 
void myInit(void) 
{ 

glClearColor (1.0, 1.0, 1.0, 0.0); 

glColor3f (0.0, 0.0, 0.0); 

glPointSize(4.0); 
glMatrixMode(GL_PROJECTION); 
glLoadIdentity(); 
gluOrtho2D(0.0, 640.0, 0.0, 480.0); 
} 
void Display(void) 
{ 

glClear (GL_COLOR_BUFFER_BIT); 
glBegin(GL_POINTS); 
glVertex2i(100, 50); 

glVertex2i(100, 130); 

glVertex2i(150, 130); 

glEnd( ); 
glFlush(); 
} 
int main (int argc, char **argv) 
{ 

glutInit(&argc, argv); 

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); 

glutInitWindowSize(640,480); 
glutInitWindowPosition(100,150); 
glutCreateWindow("Example"); 

glutDisplayFunc(Display); 

myInit(); 
glutMainLoop(); 
return 0; 

}
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Example : White Rectangle on a Black Background (3-Dimension co-ordinates) 
 
#include "stdafx.h" 

#include "gl/glut.h" 
#include <gl/gl.h> 

 
void Display(void) 

{ 

glClearColor (0.0, 0.0, 0.0, 0.0); 
glClear (GL_COLOR_BUFFER_BIT); 
glColor3f (1.0, 1.0, 1.0); 

glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0); 

glBegin(GL_POLYGON); 

glVertex3f (0.25, 0.25, 0.0); 

glVertex3f (0.75, 0.25, 0.0); 

glVertex3f (0.75, 0.75, 0.0); 

glVertex3f (0.25, 0.75, 0.0); 

glEnd(); 
glFlush(); 
} 
int main (int argc, char **argv) 
{ 

glutInit(&argc, argv); 

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); 

glutInitWindowSize(640,480); 

glutCreateWindow("Intro"); 

glClearColor(0.0,0.0,0.0,0.0); 

glutDisplayFunc(Display); 

glutMainLoop(); 

return 0; 
} 
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Example : Big Dipper 
 
#include "stdafx.h" 

#include "gl/glut.h" 
#include <gl/gl.h> 
void myInit(void) 
{ 
glClearColor (0.0, 0.0, 0.0, 0.0); 

glColor3f (1.0, 1.0, 1.0); 

glPointSize(4.0); 

glMatrixMode(GL_PROJECTION); 

glLoadIdentity(); 

gluOrtho2D(0.0, 640.0, 0.0, 480.0); 
} 
void Display(void) 

{ 
glClear (GL_COLOR_BUFFER_BIT); 
glBegin(GL_POINTS); 

glVertex2i(289, 190); 

glVertex2i(320, 128); 

glVertex2i(239, 67); 

glVertex2i(194, 101); 

glVertex2i(129, 83); 

glVertex2i(75, 73); 

glVertex2i(74, 74); 

glVertex2i(20, 10); 

glEnd( ); 
glFlush(); 
} 

 
int main (int argc, char **argv) 

{ 
glutInit(&argc, argv); 
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); 

glutInitWindowSize(640,480); 

glutInitWindowPosition(100,150); 

glutCreateWindow("Draw Big Dipper"); 

glutDisplayFunc(Display); 

myInit(); 

glutMainLoop(); 

return 0; 
}
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Making Line Drawings 
 
OpenGL makes it easy to draw a line: use GL_LINES as the argument to glBegin(), and 

pass it the two end points as vertices. Thus to draw a line between (40,100) and (202,96) 

use: 

 
glBegin(GL_LINES); // use constant GL_LINES here 

glVertex2i(40, 100); 

glVertex2i(202, 96); 
glEnd(); 

 
OpenGL provides tools for setting the attributes of lines. 

 
A line‟s color is set in the same way as for points, using glColor3f(). 

 

 

To draw thicker lines use glLineWidth(4.0). The default thickness is 1.0 
 

 

To make stippled (dotted or dashed) lines, you use the command glLineStipple() to 
define the stipple pattern, and then we enable line stippling with glEnable() 

 
glLineStipple(1, 0x3F07); 

glEnable(GL_LINE_STIPPLE);



CS2401 – Computer Graphics Unit - III  

 

 

 

Drawing Polylines and Polygons 
 
Polyline is a collection of line segments joined end to end. It is described by an 

ordered list of points, 
 

 

 
 
In OpenGL a polyline is called a “line strip”, and is drawn by specifying the vertices in 

turn between glBegin(GL_LINE_STRIP) and glEnd(). 

For example, the code: 

glBegin(GL_LINE_STRIP); // draw an open polyline 
glVertex2i(20,10); 
glVertex2i(50,10); 
glVertex2i(20,80); 

glVertex2i(50,80); 

glEnd(); 
glFlush(); 

 
 
 

glBegin(GL_LINE_LOOP); // draw an polygon 

glVertex2i(20,10); 
glVertex2i(50,10); 
glVertex2i(20,80); 

glVertex2i(50,80); 

glEnd(); 
glFlush(); 

 

 

Attributes such as color, thickness and stippling may be applied to polylines in the same 

way they are applied to single lines. If it is desired to connect the last point with the first 

point to make the polyline into a polygon simply replace GL_LINE_STRIP with 

GL_LINE_LOOP. 

 
Polygons drawn using GL_LINE_LOOP cannot be filled with a color or pattern. To draw 

filled polygons we have to use glBegin(GL_POLYGON) 
 

 

Drawing Aligned Rectangles. 
 
A special case of a polygon is the aligned rectangle, so called because its sides are 

aligned with the coordinate axes.
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OpenGL provides the ready-made function: 

 
glRecti(GLint x1, GLint y1, GLint x2, GLint y2); 

 
// draw a rectangle with opposite corners (x1, y1) and (x2, y2); 

// fill it with the current color; 

 
glClearColor(1.0,1.0,1.0,0.0); // white background 

glClear(GL_COLOR_BUFFER_BIT); // clear the window 

glColor3f(0.6,0.6,0.6); // bright gray 

glRecti(20,20,100,70); 

glColor3f(0.2,0.2,0.2); // dark gray 

glRecti(70, 50, 150, 130); 

 
aspect ratio = width/height; 

 

 

Polygons 
 
Polygons are the areas enclosed by single closed loops of line segments, where the line 

segments are specified by the vertices at their endpoints 

 
Polygons are typically drawn by filling in all the pixels enclosed within the boundary, but 

you can also draw them as outlined polygons or simply as points at the vertices. A filled 

polygon might be solidly filled, or stippled with a certain pattern 

 
OpenGL also supports filling more general polygons with a pattern or color. 

 
To draw a convex polygon based on vertices (x0, y0), (x1, y1), …, (xn, yn) use the usual 

list of vertices, but place them between a glBegin(GL_POLYGON) and an glEnd(): 

 
glBegin(GL_POLYGON); 

glVertex2f(x0, y0); 

glVertex2f(x1, y1); 

. . . . .. 

glVertex2f(xn, yn); 

glEnd(); 

 
The following list explains the function of each of the five constants: 

 
GL_TRIANGLES: takes the listed vertices three at a time, and draws a separate triangle 

for each; 

 
GL_QUADS: takes the vertices four at a time and draws a separate quadrilateral for each
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GL_TRIANGLE_STRIP: draws a series of triangles based on triplets of vertices: v0, v1, 

v2, then v2, v1, v3, then v2, v3, v4, etc. (in an order so that all triangles are “traversed” in 

the same way;e.g. counterclockwise). 
 

 

GL_TRIANGLE_FAN: draws a series of connected triangles based on triplets of 
vertices: v0, v1, v2, then v0, v2, v3, then v0, v3, v4, etc. 

 
GL_QUAD_STRIP: draws a series of quadrilaterals based on foursomes of vertices: first 

v0,  v1,  v3,  v2,  then  v2,  v3,  v5,  v4,  then  v4,  v5,  v7,  v6  (in  an  order  so  that  all 

quadrilaterals are “traversed” in the same way; e.g. counterclockwise). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example to draw smooth shaded Trigangle with shades 
 
#include "stdafx.h" 

#include "gl/glut.h" 
#include <gl/gl.h> 
void init(void) 
{ 
glClearColor (0.0, 0.0, 0.0, 0.0); 

glShadeModel (GL_SMOOTH); 

gluOrtho2D (0.0, 640.0, 0.0, 480.0); 

glMatrixMode (GL_PROJECTION); 

glLoadIdentity (); 

} 

void display(void)
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{ 

glClear (GL_COLOR_BUFFER_BIT); 
glBegin (GL_TRIANGLES); 
glColor3f (1.0, 0.0, 0.0); 

glVertex2f (50.0, 50.0); 

glColor3f (0.0, 1.0, 0.0); 

glVertex2f (250.0, 50.0); 

glColor3f (0.0, 0.0, 1.0); 

glVertex2f (50.0, 250.0); 

glEnd(); 

glFlush (); 
} 
int main(int argc, char** argv) 
{ 
glutInit(&argc, argv); 

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); 

glutInitWindowSize (500, 500); 

glutInitWindowPosition (100, 100); 
glutCreateWindow ("Shade"); 
init (); 

glutDisplayFunc(display); 

glutMainLoop(); 

return 0; 
} 

 

 

Polygon Filling 
 
A filled polygon might be solidly filled, or stippled with a certain pattern. 

 

 

The pattern is specified with 128-byte array of data type GLubyte.   The 128 bytes 

provides the bits for a mask that is 32 bits wide and 32 bits high. 

 
GLubyte mask[]={0xff,0xfe………….128 entries} 

 

 

The first 4 bytes prescribe the 32 bits across the bottom row from left to right; the next 4 
bytes give the next row up, etc.. 

 
Example 

 
#include "stdafx.h" 
#include "gl/glut.h" 
#include <gl/gl.h>
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GLubyte mask[]={ 

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x03, 0x80, 0x01, 0xC0, 0x06, 0xC0, 0x03, 0x60, 
0x04, 0x60, 0x06, 0x20, 0x04, 0x30, 0x0C, 0x20, 
0x04, 0x18, 0x18, 0x20, 0x04, 0x0C, 0x30, 0x20, 
0x04, 0x06, 0x60, 0x20, 0x44, 0x03, 0xC0, 0x22, 
0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22, 
0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22, 

0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22, 
0x66, 0x01, 0x80, 0x66, 0x33, 0x01, 0x80, 0xCC, 
0x19, 0x81, 0x81, 0x98, 0x0C, 0xC1, 0x83, 0x30, 
0x07, 0xe1, 0x87, 0xe0, 0x03, 0x3f, 0xfc, 0xc0, 
0x03, 0x31, 0x8c, 0xc0, 0x03, 0x33, 0xcc, 0xc0, 
0x06, 0x64, 0x26, 0x60, 0x0c, 0xcc, 0x33, 0x30, 
0x18, 0xcc, 0x33, 0x18, 0x10, 0xc4, 0x23, 0x08, 

0x10, 0x63, 0xC6, 0x08, 0x10, 0x30, 0x0c, 0x08, 
0x10, 0x18, 0x18, 0x08, 0x10, 0x00, 0x00, 0x08}; 

void myInit(void) 
{ 
glClearColor (0.0, 0.0, 0.0, 0.0); 

glColor3f (1.0, 1.0, 1.0); 

glPointSize(4.0); 

glMatrixMode(GL_PROJECTION); 

glLoadIdentity(); 

gluOrtho2D(0.0, 640.0, 0.0, 480.0); 
} 
void Display(void) 
{ 
glClearColor(0.0,0.0,0.0,0.0); // white background 

glClear(GL_COLOR_BUFFER_BIT); 

glColor3f(1.0, 1.0, 1.0); 

glRectf(25.0, 25.0, 125.0, 125.0); 

glEnable(GL_POLYGON_STIPPLE); 

glPolygonStipple(mask); 

glRectf (125.0, 25.0, 225.0, 125.0); 

glDisable(GL_POLYGON_STIPPLE); 

glFlush(); 
} 

 
int main (int argc, char **argv) 

{ 
glutInit(&argc, argv); 
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
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glutInitWindowSize(640,480); 

glutInitWindowPosition(100,150); 

glutCreateWindow("Polygon Stipple"); 

glutDisplayFunc(Display); 
myInit(); 
glutMainLoop(); 
return 0; 
} 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simple Interaction with the mouse and keyboard 
 
When the user presses or releases a  mouse button, moves the  mouse, or  presses a 

keyboard  key,  an  event  occur.  Using  the  OpenGL  Utility  Toolkit  (GLUT)  the 
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programmer can register a callback function with each of these events by using the 

following commands: 

 
glutMouseFunc(myMouse) which registers myMouse() with the event that occurs when 

the mouse button is pressed or released; 

 
glutMotionFunc(myMovedMouse) which registers myMovedMouse() with the event 

that occurs when the mouse is moved while one of the buttons is pressed; 
 

 

glutKeyboardFunc(myKeyboard) which registers myKeyBoard() with the event that 
occurs when a keyboard key is pressed. 

 

 

Mouse interaction. 
 

 

void myMouse(int button, int state, int x, int y); 

 
When a mouse event occurs the system calls the registered function, supplying it with 
values for these parameters. The value of button will be one of:
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GLUT_LEFT_BUTTON, 

GLUT_MIDDLE_BUTTON, 

GLUT_RIGHT_BUTTON, 

 
with the obvious interpretation, and the value of state will be one of: GLUT_UP or 

GLUT_DOWN. The values x and y report the position of the mouse at the time of the 

event. 
 

 

Keyboard interaction. 
 
As mentioned earlier, pressing a key on the keyboard queues a keyboard event. The 

callback function myKeyboard() is registered with this type of event through 
 

 

glutKeyboardFunc(myKeyboard). 
 
It must have prototype: 

 

 

void myKeyboard(unsigned int key, int x, int y); 
 
 
 

The value of key is the ASCII value12 of the key pressed. The values x and y report the 

position of the mouse at the time that the event occurred. (As before y measures the 

number of pixels down from the top of the window.) 

 
void myKeyboard(unsigned char theKey, int mouseX, int mouseY) 

{ 
GLint x = mouseX; 
GLint y = screenHeight - mouseY; // flip the y value as always 

switch(theKey) 
{ 
case „p‟: 

drawDot(x, y); // draw a dot at the mouse position 

break; 
case GLUT_KEY_LEFT: List[++last].x = x; // add a point 
List[ last].y = y; 

break; 
case „E‟: 
exit(-1); //terminate the program 
default: 
break; // do nothing 
} 
}
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Drawing three dimensional objects & Drawing three dimensional scenes 
 
OpenGL has separate transformation matrices for different graphics features 

 
glMatrixMode(GLenum mode), where mode is one of: 

 

GL_MODELVIEW - for manipulating model in scene 

GL_PROJECTION - perspective orientation 

GL_TEXTURE - texture map orientation 
 
glLoadIdentity(): loads a 4-by-4 identity matrix into the current matrix 

 
glPushMatrix() : push current matrix stack 

 
glPopMatrix() : pop the current matrix stack 

 
glMultMatrix () : multiply the current matrix with the specified matrix 

 
glViewport() : set the viewport 

 

 

Example : glViewport(0, 0, width, height); 

 
gluPerspective() : function sets up a perspective projection matrix. 

 
Format :   gluPerspective(angle, asratio, ZMIN, ZMAX); 

 
Example : gluPerspective(60.0, width/height, 0.1, 100.0); 

 
gluLookAt() - view volume that is centered on a specified eyepoint 

 
Example : gluLookAt(3.0, 2.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); 

 

glutSwapBuffers () :   glutSwapBuffers swaps the buffers of the current window if 

double buffered. 
 

 

Example for drawing three dimension Objects 

 
glBegin(GL_QUADS); // Start drawing a quad primitive 

glVertex3f(-1.0f, -1.0f, 0.0f); // The bottom left corner 

glVertex3f(-1.0f, 1.0f, 0.0f); // The top left corner 

glVertex3f(1.0f, 1.0f, 0.0f); // The top right corner 

glVertex3f(1.0f, -1.0f, 0.0f); // The bottom right corner 

glEnd();
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// Triangle 
 
glBegin( GL_TRIANGLES ); 

glVertex3f( -0.5f, -0.5f, -10.0 ); 

glVertex3f( 0.5f, -0.5f, -10.0 ); 

glVertex3f( 0.0f, 0.5f, -10.0 ); 

glEnd(); 
 
//  Quads in different colours 

 
glBegin(GL_QUADS); 

glColor3f(1,0,0); //red 

glVertex3f(-0.5, -0.5, 0.0); 

glColor3f(0,1,0); //green 

glVertex3f(-0.5, 0.5, 0.0); 

glColor3f(0,0,1); //blue 

glVertex3f(0.5, 0.5, 0.0); 

glColor3f(1,1,1); //white 

glVertex3f(0.5, -0.5, 0.0); 

glEnd(); 

 
GLUT includes several routines for drawing these three-dimensional objects: 

 
cone 

icosahedron 

teapot 

cube 

octahedron 

tetrahedron 

dodecahedron 

sphere 

torus 

 
OpenGL Functions for drawing the 3D Objects 

 
glutWireCube(double size); 

glutSolidCube(double size); 

glutWireSphere(double radius, int slices, int stacks); 

glutSolidSphere(double radius, int slices, int stacks); 

glutWireCone(double radius, double height, int slices, int stacks); 

glutSolidCone(double radius, double height, int slices, int stacks); 

glutWireTorus(double inner_radius, double outer_radius, int sides, int rings); 

glutSolidTorus(double inner_radius, double outer_radius, int sides, int rings); 

glutWireTeapot(double size); 

glutSolidTeapot(double size);
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3D Transformation in OpenGL 

glTranslate () : multiply the current matrix by a translation matrix 

glTranslated(GLdouble  x, GLdouble  y,  GLdouble  z); 
void glTranslatef(GLfloat  x,  GLfloat  y,  GLfloat  z); 

 
x, y, z - Specify the x, y, and z coordinates of a translation vector. 

 
If the matrix mode is either GL_MODELVIEW or GL_PROJECTION,  all objects drawn after a 

call to glTranslate are translated. 

 
Use glPushMatrix and glPopMatrix to save and restore the untranslated coordinate system. 

 
glRotate() : multiply the current matrix by a rotation matrix 

 
void glRotated(GLdouble angle,  GLdouble  x,  GLdouble  y,  GLdouble  z); 

void glRotatef(GLfloat  angle,  GLfloat  x,  GLfloat  y,  GLfloat  z); 

 
angle :  Specifies the angle of rotation, in degrees. 

x, y, z : Specify the x, y, and z coordinates of a vector, respectively. 

glScale() : multiply the current matrix by a general scaling matrix 

voidglScaled(GLdouble  x,  GLdouble  y,  GLdouble  z); 

void glScalef(GLfloat  x, GLfloat  y,  GLfloat  z); 

 
x, y, z : Specify scale factors along the x, y, and z axes, respectively. 

 

 
 

Example : Transformation of a Polygon 

 
#include "stdafx.h" 

#include "gl/glut.h" 

#include <gl/gl.h> 

void Display(void) 

{ 

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 

glLoadIdentity(); 

gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); 

glColor3f(0.0, 1.0, 0.0); 

glBegin(GL_POLYGON); 

glVertex3f( 0.0, 0.0, 0.0);           // V0 ( 0, 0, 0) 

glVertex3f( 1.0f, 0.0, 0.0);          // V1 ( 1, 0, 0)
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glVertex3f( 1.0f, 1.0f, 0.0);         // V2 ( 1, 1, 0) 

glVertex3f( 0.5f, 1.5f, 0.0);         // V3 (0.5, 1.5, 0) 

glVertex3f( 0.0, 1.0f, 0.0);           // V4 ( 0, 1, 0) 

glEnd(); 

glPushMatrix(); 

glTranslatef(1.5, 2.0, 0.0); 

glRotatef(90.0, 0.0, 0.0, 1.0); 

glScalef(0.5, 0.5, 0.5); 

glBegin(GL_POLYGON); 

glVertex3f( 0.0, 0.0, 0.0);           // V0 ( 0, 0, 0) 

glVertex3f( 1.0f, 0.0, 0.0);          // V1 ( 1, 0, 0) 

glVertex3f( 1.0f, 1.0f, 0.0);         // V2 ( 1, 1, 0) 

glVertex3f( 0.5f, 1.5f, 0.0);         // V3 (0.5, 1.5, 0) 

glVertex3f( 0.0, 1.0f, 0.0);           // V4 ( 0, 1, 0) 
glEnd(); 
glPopMatrix(); 

glFlush(); 

glutSwapBuffers(); 

} 

void Init(void) 

{ 

glClearColor(0.0, 0.0, 0.0, 0.0); 

} 

void Resize(int width, int height) 

{ 

glViewport(0, 0, width, height); 

glMatrixMode(GL_PROJECTION); 

glLoadIdentity(); 

gluPerspective(60.0, width/height, 0.1, 1000.0); 

glMatrixMode(GL_MODELVIEW); 

glLoadIdentity(); 

} 

int main(int argc, char **argv) 

{ 

glutInit(&argc, argv); 

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); 

glutInitWindowSize(400, 400); 

glutInitWindowPosition(200, 200); 

glutCreateWindow("Polygon in OpenGL"); 

Init(); 

glutDisplayFunc(Display); 

glutReshapeFunc(Resize); 

glutMainLoop(); 

return 0; 

} 
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UNIT IV – RENDERING 

 
Introduction to shading models – Flat and smooth shading – Adding 

texture to faces – Adding shadows of objects – Building a camera ina 
program – Creating shaded objects – Rendering texture – Drawing 

shadows. 

 
4.1 Introduction to Shading Models 

The mechanism of light reflection from an actual surface is very 

complicated  it  depends  on  many  factors.  Some  of  these  factors  are 
geometric and others are related to the characteristics of the surface. 

A shading model dictates how light is scattered or reflected from a 

surface. The shading models described here focuses on achromatic light. 
Achromatic light has brightness and no color, it is a shade of gray so it is 

described by a single value its intensity. 
A shading model uses two types of light source to illuminate the 

objects in a scene : point light sources and ambient light. Incident 
light interacts with the surface in three different ways: 

Some is absorbed by the surface and is converted to heat. 

Some is reflected from the surface 

Some is transmitted into the interior of the object 
If all incident light is absorbed the object appears black and is 

known as a black body. If all of the incident light is transmitted the 
object is visible only through the effects of reflection. 

Some amount of the reflected light travels in the right direction to 

reach the eye causing the object to be seen. The amount of light that 

reaches the eye depends on the orientation of the surface, light and 
the observer. There are two different types of reflection of incident 

light 

Diffuse scattering occurs when some of the incident light 

slightly penetrates the surface and is re-radiated uniformly in 
all directions. Scattered light interacts strongly with the surface 

and so its color is usually affected by the nature of the surface 
material. 

   Specular   reflections   are    more    mirrorlike    and   highly 
directional.  Incident  light  is  directly  reflected  from  its  outer 
surface. This makes the surface looks shinny. In the simplest 
model the reflected light has the same color as the incident 

light, this makes the material look like plastic. In a more 
complex model the color of the specular light varies , providing 

a better approximation to the shininess of metal surfaces. 
The  total  light  reflected  from  the  surface  in  a  certain 

direction is the sum of the diffuse component and the specular
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component. For each surface point of interest we compute the size 
of each component that reaches the eye. 

4.1.1 Geometric Ingredients For Finding Reflected Light 
We need to find three vectors in order to compute the diffuse 

and specular components. The below fig. shows three principal 
vectors ( s, m and v) required to find the amount of light that 
reaches the eye from a point P. 

Important directions in computing the reflected light 
 

 

1. The 
normal vector , m , to the surface at P. 
2. The vector v from P to the viewer‟s  eye. 

3. The vector s from P to the light source. 
The angles between these three vectors form the basis of 

computing light intensities. These angles are normally calculated 
using world coordinates. 

Each face of a mesh object has two sides. If the object is 

solid , one is inside and the other is outside. The eye can see only 

the outside and it is this side for which we must compute light 
contributions. 

We shall develop the shading model for a given side of a face. 

If that side of the face is turned away from the eye there is no light 
contribution. 
4.1.2 How to Compute the Diffuse Component 

Suppose that a light falls from a point source onto one side 

of a face , a fraction of it is re-radiated diffusely in all directions 
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from this side. Some fraction of the re-radiated part reaches the 

eye, with an intensity denoted by Id. 
An important property assumed for diffuse scattering is that 

it is independent of the direction from the point P, to the location of 
the  viewer‟s    eye.    This  is   called  omnidirectional  scattering  , 

because scattering is uniform in all directions. Therefore Id     is 
independent of the angle between m and v. 

ae cross section of a point source illuminating a face S when 
m is aligned with s. 

Fig (b) the face is turned partially away from the light source 

through angle θ.  The area subtended is now only cos(θ) , so that 

the brightness is reduced of S is reduced by this same factor. This 
relationship between the brightness and surface orientation is 
called Lambert’s law. 

cos(θ) is  the dot  product between the normalized versions of 
s and m. Therefore the strength of the diffuse component: 

s.m 
Id = Is ρd 

s m 

Is    is the intensity of the light source and ρd is the diffuse 
reflection coefficient. If the facet is aimed away from the eye this 

dot product is negative so we need to evaluate Id    to 0. A more 
precise computation of the diffuse component is : 

s.m 
Id = Is ρd max       ,0 

s m 

The reflection coefficient ρd depends on the wavelength of the 
incident light , the angle θ and various physical properties of the 

surface. But for simplicity and to reduce computation time, these 
effects   are   usually   suppressed   when   rendering   images.   A 

reasonable value for ρd is chosen for each surface. 
4.1.3 Specular Reflection 

Real objects do not scatter light uniformly in all directions 

and so a specular component is added to the shading model. 
Specular reflection causes highlights which can add reality to a 

picture when objects are shinny. The behavior of specular light can 
be explained with Phong model.
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Phong Model 
It is easy to apply and the highlights generated by the phong 

model  given an plasticlike appearance , so the phong model    is 
good when the object is made of shinny plastic or glass. 

The Phong model is less successful with objects that have a 
shinny metallic surface. 

Fig a) shows a situation where light from a source impinges 
on a surface and is reflected in different directions. 

 

 
 
 
 
 
 
 
 
 
 

In this model we discuss the amount of light reflected is 
greatest in the direction of perfect mirror reflection , r, where the 
angle of incidence θ 

equals the angle of reflection. This is the direction in which all light 
would travel if the surface were a perfect mirror. At the other 

nearby angles theamount of light reflected diminishes rapidly, Fig 
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(b) shows this with beam patterns. The distance from P to the beam 

envelope shows the relative strength 
of 

the light scattered in that direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig(c) shows how to quantify this beam pattern effect . The 
direction r of perfect reflection depends on both s and the normal 
vector m to the surface, according to:

r = -s + 2 
  s.m   

m 

 

m ( the mirror – reflection direction)

For surfaces that are shiny but are not true mirrors, the 
amount of light reflected falls  off as the angle φ between r and v 

increases. In Phong model the φ is said to vary as some power f of 

the cosine of φ i.e., ( cos (φ ))f in which f is chosen experimentally 

and usually lies between 1 and 200.
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4.1.4 The Role of Ambient Light and Exploiting Human Perception 
The diffuse and specular components of reflected light are found by 

simplifying the rules by which physical light reflects from physical 

surfaces. The dependence of these components  on the relative position 
of the eye , model and light sources greatly improves the reality of a 
picture. 

The simple reflection model does not perfectly renders a scene. An 
example: shadows are unrealistically deep and harsh, to soften these 
shadows we add a third light component called ambient light. 

With only diffuse and specular reflections, any parts of a surface 

that are shadowed from the point source receive no light and so are 
drawn black but in real, the scenes around us are always in some soft 
nondirectional  light.  This  light  arrives  by  multiple  reflections  from 

various objects in the surroundings. But it would be computationally 
very expensive to model this kind of light. 
Ambient Sources and Ambient Reflections 

To overcome the problem of totally dark shadows we imagine that a 

uniform   background   glow   called   ambient   light   exists   in   the 
environment.  The  ambient  light  source  spreads  in  all  directions 
uniformly. 

The source is assigned an intensity Ia. Each face in the model is 

assigned a value for its ambient reflection coefficient ρd, and the term Ia 

ρa is added to the diffuse and specular light that is reaching the eye from 

each point P on that face. Ia and ρa are found experimentally. 
Too  little  ambient  light  makes  shadows  appear  too  deep  and 

harsh., too much makes the picture look washed out and bland. 

 
4.1.5 How to combine Light Contributions 

We  sum  the  three  light  contributions  –diffuse,  specular  and 
ambient to form the total amount of light I that reaches the eye from 
point P: 

I = ambient + diffuse + specular 
I= Ia ρa   + Id ρd × lambert + Isp ρs × phongf 

Where we define the values
 

lambert = max 0, 
 s.m  
s m 

 

and phong = max 

 

0, 
 h.m 

h m
 

I depends on various source intensities and reflection coefficients 
and the relative positions of the point P, the eye and the point light 

source. 
 
4.1.6 To Add Color 

Colored light can be constructed by adding certain amounts of red, 

green and blue light. When dealing with colored sources and surfaces we 
calculate each color component individually and simply add them to from 
the final color of the reflected light.
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Ir= Iar ρar   + Idr ρdr × lambert + Ispr ρsr × phongf
 

Ig= Iag ρag   + Idg ρdg × lambert + Ispg ρsg × phongf 

Ib= Iab ρab   + Idb ρdb × lambert + Ispb ρsb × phongf 
--------------- (1) 

The above equations are applied three times to compute the 

red, green and blue components of the reflected light. 

The light sources have three types of color : ambient =(Iar,Iag,Iab) , 
diffuse=(Idr,Idg,Idb) and specular=(Ispr,Ispg,Ispb). Usually the diffuse and the 
specular light colors are the same. The terms lambert and phongf  do not 
depends on the color component so they need to be calculated once. To 
do this we need to define nine reflection coefficients: 

ambient reflection coefficients:  ρar , ρag and ρab 

diffuse reflection coefficients:    ρdr , ρdg and ρdb 

specular reflection coefficients: ρsr , ρsg and ρsb 

The ambient and diffuse reflection coefficients are based on the 
color of the surface itself. 
The Color of Specular Light 

Specular light is mirrorlike , the color of the specular component 

is same as that of the light source. 

Example: A specular highlight seen on a glossy red apple when 
illuminated by a yellow light is yellow and not red. This is the same for 
shiny objects made of plasticlike material. 

To create specular highlights for a plastic surface the specular 

reflection coefficients ρsr , ρsg and ρsb are set to the same value so that the 
reflection coefficients are gray in nature and do not alter the color of the 
incident light. 

 
4.1.7 Shading and the Graphics Pipeline 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The key idea is that the vertices of a mesh are sent down the 

pipeline along with their associated vertex normals, and all shading 
calculations are done on vertices. 

The above fig. shows a triangle with vertices v0,v1 and v2 being 
rendered. Vertex vi has the normal vector mi associated with it. These 
quantities are sent down the pipeline with calls such as :
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glBegin(GL_POLYGON); 
for( int i=0 ;i< 3; i++) 
{

 
 
 

} 
glEnd(); 

glNormal3f(m[i].x, m[i].y, m[i].z); 
glVertex3f(v[i].x, v[i].y, v[i].z);

The  call  to glNormal3f() sets the “current  normal  vector” which 

is applied to all vertices sent using glVertex3f(). The current normal 
remains current until it is changed with another call to glNormal3f(). 

The vertices are transformed by the modelview matrix, M so 

they are then expressed in camera coordinates. The normal vectors are 

also transformed. Transforming points of a surface by a matrix M causes 
the normal m at any point to become the normal M-Tm on the 
transformed surface, where M-T is the transpose of the inverse of M. 

All   quantities   
after   the   modelview   transformation   are expressed in camera 

coordinates. At this point the shading model equation (1) is applied and a 
color is attached to each vertex. 

The clipping step is performed in homogenous coordinates. 
This may alter some of the vertices. The below figure shows the case 

where vertex v1 of a triangle is clipped off and two new vertices a and b 
are created. The triangle becomes a quadrilateral. The color at each new 

vertices must be computed, since it is needed in the actual rendering 
step. 

Clipping a polygon against the view volume 
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The vertices are finally passed through the viewport 
transformation where they are mapped into the screen coordinates. The 
quadrilateral is then rendered. 

 
4.1.8 To Use Light Sources in OpenGL 

OpenGL provides a number of functions for setting up and 
using light sources, as well as for specifying the surface properties of 
materials. 
Create a Light Source 

In OpenGL we can define upto eight sources, which are 

referred through names GL_LIGHT0, GL_LIGHT1 and so on. Each source 
has properties and must be enabled. Each property has a default value. 
For example, to create a source located at (3,6,5) in the world coordinates
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GLfloat myLightPosition[]={3.0 , 6.0,5.0,1.0 }; 
glLightfv(GL_LIGHT0, GL-POSITION, myLightPosition); 

glEnable(GL_LIGHTING);      //enable lighting in general 
glEnable(GL_LIGHT0);          //enable source GL_LIGHT0 

The array myLightPosition[] specifies the location of the light 
source. This position is passed to glLightfv() along with the name 
GL_LIGHT0 to attach it to the particular source GL_LIGHT0. 

Some sources such as desk lamp are in the scene whereas like 
the sun are infinitely remote. OpenGL allows us to create both types by 
using homogenous coordinates to specify light position:(x,y,z,1) : a local 
light source at the position (x,y,z) 
(x,y,z,0) a vector to an infinitely remote light source in the direction (x,y,z) 

A local source and an infinitely remote source
The above 

fig,. shows a local source positioned at (0,3,3,1) 
and a remote source “located” along vector 

(3,3,0,0). Infinitely remote light sources are often 
called “directional”. 

In OpenGL you can assign a different color to three types of 
light that a source emits : ambient , diffuse and specular. Arrays are 

used to hold the colors emitted by light sources and they are passed to 
glLightfv() through the following code: 

 
GLfloat amb0[]={ 0.2 , 0.4, 0.6, 1.0 };             // define some colors 
GLfloat diff0[]= { 0.8 ,0.9 , 0.5 ,1.0 }; 
GLfloat spec0[]= { 1.0 , 0.8 , 1.0, 1.0 }; 
glLightfv(GL_LIGHT0, GL_AMBIENT, amb0); //attach them to LIGHT0 

glLightfv(GL_LIGHT0, GL_DIFFUSE, diff0); 
glLightfv(GL_LIGHT0, GL_SPECULAR, spec0); 

 
Colors are specified in RGBA format meaning red, green, blue 

and alpha. The alpha value is sometimes used for blending two colors on 

the screen. Light sources have various default values. For all sources: 
Default ambient= (0,0,0,1);   dimmest possible :black 

For light source LIGHT0: 
Default diffuse= (1,1,1,1)      brightest possible:white 
Default specular=(1,1,1,1)    brightest possible:white
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Spotlights 
Light sources are point sources by default, meaning that they 

emit light uniformly in all directions. But OpenGL allows you to make 

them into spotlights, so they emit light in a restricted set of directions. 
The fig. shows a spotlight aimed in direction d with a “cutoff angle” of α. 

Properties of an OpenGL spotlight 
 
 
 
 
 
 
 
 
 

 

No light is seen at points lying outside the cutoff cone. For 
vertices  such  as  P,  which  lie  inside  the  cone,  the  amount  of  light 
reaching P is attenuated by the factor cosε(β),   where  β  is   the  angle 

between d and a line from the source to P and is the exponent chosen by 

the user to give the desired falloff of light with angle. 
The parameters for a spotlight are set by using glLightf() to 

set a single value and glLightfv() to set a vector: 

 
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF,45.0); //a cutoff angle 45degree 
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT,4.0);         //ε=4.0 
GLfloat dir[]={2.0, 1.0, -4.0};             // the spotlight‟s direction 

glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION,dir); 

 
The default values for these parameters are d= (0,0,-1) , α=180 degree 

and ε=0,  which makes a source an omni directional point source. 

 
OpenGL allows three parameters to be set that specify general 

rules for applying the lighting model. These parameters are passed to 
variations of the function glLightModel. 
The color of global Ambient Light: 

The global ambient light is independent of any particular 
source. To create this light , specify its color with the statements: 

 
GLfloat amb[]={ 0.2, 0.3, 0.1, 1.0}; 
glLightModelfv(GL_LIGHT_MODEL_AMBIENT,amb); 

 
This code sets the ambient source to the color (0.2, 0.3, 0.1). 

The default value is (0.2, 0.2, 0.2,1.0) so the ambient is always present. 

Setting the ambient source to a non-zero value makes object in a scene 
visible even if you have not invoked any of the lighting functions.
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Is the Viewpoint local or remote? 
OpenGL computes specular reflection using halfway vector 

h= s + v. The true directions s and v are different at each vertex. If the 

light source is directional then s is constant but v varies from vertex to 
vertex. The rendering speed is increased if v is made constant for all 
vertices. 

As a default OpenGL uses v =(0,0,1),which  points along the 
positive z axis in camera coordinates. The true value of v can be 
computed by the following statement: 

 
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE); 

 
Are both sides of a Polygon Shaded Properly? 

Each polygon faces in a model has two sides, inside and 
outside surfaces. The vertices of a face are listed in counterclockwise 

order as seen from outside the object. The camera can see only the 
outside surface of each face. With hidden surfaces removed, the inside 

surface of each face is hidden from the eye by some closer face. 

In OpenGL 

the terms “front faces” and “back  faces” are used for  “inside” and 

“outside”. A face  is  a front face  if its vertices are listed in 

counterclockwise order as seen by the eye. 
The fig.(a) shows a eye viewing a cube which is modeled using 

the  counterclockwise  order  notion.  The  arrows  indicate  the  order  in 
which the vertices are passed to OpenGL. For an object that encloses 

that some space, all faces that are visible to the eye are front faces, and 
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OpenGL draws them with the correct shading. OpenGL also draws back 

faces but they are hidden by closer front faces. 
OpenGL’s definition of a front face 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig(b) shows a box with a face removed. Three of the visible 

faces are back faces. By default, OpenGL does not shade these properly. 
To do proper shading of back faces we use: 

 
glLightModeli (GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
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When this statement is executed, OpenGL reverses the normal 
vectors of any back face so that they point towards the viewer, and then 

it performs shading computations properly. Replacing GL_TRUE with 
GL_FALSE will turn off this facility. 

 
Moving Light Sources 

Lights can be repositioned by suitable uses of glRotated() and 

glTranslated(). The array position, specified by using 
glLightfv(GL_LIGHT0,GL_POSITION,position) 

is modified by the modelview matrix that is in effect at the time glLightfv() 

is called. To modify the position of the light with transformations and 
independently move the camera as in the following code: 

 
void display() 
{ 

GLfloat position[]={2,1,3,1};        //initial light position 
clear the color and depth buffers 

glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
glPushMatrix(); 

glRotated(….);             //move the light 

glTranslated(…); 

glLightfv(GL_LIGHT0,GL_POSITION,position); 
glPopMatrix(); 

 

gluLookAt(….);                              //set the camera position 

draw the object 
glutSwapBuffers(); 

} 
To move the light source with camera we use the following

code:  
GLfloat pos[]={0,0,0,1}; 

glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
glLightfv(GL_LIGHT0,GL_POSITION,position); //light at (0,0,0) 
gluLookAt(….);                   //move the light and the camera 
draw the object

 

This code establishes the light to be positoned at the eye and 
the light moves with the camera. 

 
4.1.9 Working With Material Properties In OpenGL 

The effect of a light source can be seen only when light reflects 
off  an  object‟s surface.  OpenGL  provides  methods  for  specifying  the 

various reflection coefficients. The coefficients are set with variations of
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the function glMaterial and they can be specified individually for front 
and back faces. The code: 

 
Glfloat myDiffuse[]={0.8, 0.2, 0.0, 1.0 }; 

glMaterialfv(GL_FRONT,GL_DIFFUSE,myDiffuse); 
sets the diffuse reflection coefficients( ρdr , ρdg ,ρdb) equal to (0.8, 

0.2, 0.0) for all specified front faces. The first parameter of glMaterialfv() 

can take the following values: 

GL_FRONT:Set the reflection coefficient for front faces. 
GL_BACK:Set the reflection coefficient for back faces. 

GL_FRONT_AND_BACK:Set the reflection coefficient for both front 
and back faces. 

The second parameter can take the following values: GL_AMBIENT: 

Set the ambient reflection coefficients. GL_DIFFUSE: Set the 

diffuse reflection coefficients. GL_SPECULAR: Set the 
specular reflection coefficients. 
GL_AMBIENT_AND_DIFFUSE: Set both the ambient and the 

diffuse reflection coefficients to the same values. 
GL_EMISSION: Set the emissive color of the surface. 

The  emissive color of a face  causes it to “glow” in the specified 

color, independently of any light source. 
 
4.1.10 Shading of Scenes specified by SDL 

The scene description language SDL supports the loading of 
material properties into objects so that they can be shaded properly. 

 
light 3 4 5 .8 .8 ! bright white light at (3,4,5) 
background 1 1 1 ! white background 
globalAmbient .2 .2 .2 ! a dark gray global ambient light 
ambient .2 .6 0 
diffuse .8 .2 1 ! red material 

specular 1 1 1 ! bright specular spots – the color of the source 
specularExponent 20 !set the phong exponent 

scale 4 4 4 sphere 

 
The code above describes a scene containing a sphere with the 

following material properties: 
o ambient reflection coefficients: (ρar , ρag , ρab)= (.2, 0.6, 0); 
o diffuse reflection coefficients:   ( ρdr , ρdg , ρdb)= (0.8,0.2,1.0); 
o specular reflection coefficients: (ρsr , ρsg , ρsb) = (1.0,1.0,1.0); 
o Phong exponent                              f   = 20. 

The light source is given a color of (0.8,0.8,0.8) for both its 
diffuse and specular component. The global ambient term 
(Iar , Iag , Iab)= (0.2, 0.2, 0.2). 

The  current material properties are loaded into each object‟s mtrl 

field at the time the object is created.
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When an object is drawn using drawOpenGL(), it first passes its 
material properties to OpenGL, so that at the moment the object is 

actually drawn, OpenGL has those properties in its current state. 
 
4.2 FLAT SHADING AND SMOOTH SHADING 

 
Different objects require different shading effects. In the 

modeling process we attached a normal vector to each vertex of each 
face. If a certain face is to appear as a distinct polygon, we attach the 

same normal vector to all of its vertices; the normal vector chosen is that 
indicating the direction normal to the plane of the face. If the face is 
approximate an underlying surface, we attach to each vertex the normal 

to the underlying surface at that plane. 
The  information  obtained  from  the  normal  vector  at  each 

vertex is used to perform different kinds of shading. The main distinction 

is between a shading method that accentuates  the individual polygons 

(flat shading) and a method that blends the faces to de-emphasize the 
edges between them (smooth shading). 

In both kinds of shading, the vertices are passed down the 
graphics pipeline, shading calculations are performed to attach a color to 
each vertex and the vertices are converted to screen coordinates and the 
face  is “painted” pixel  by pixel  with the appropriate color. 

 
Painting a Face 

A face is colored using a polygon fill routine. A polygon routine 

is sometimes called as a tiler because it moves over a polygon pixel by 
pixel, coloring each pixel. The pixels in a polygon are visited in a regular 
order usually from bottom to top of the polygon and from left to right. 

Polygons intersect are convex. A tiler designed to fill only 

convex polygons can be very efficient because at each scan line there is 
unbroken run of pixels that lie inside the polygon. OpenGL uses this 
property and always fills convex polygons correctly whereas nonconvex 

polygons are not filled correctly. 
A convex quadrilateral whose face is filled with color
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The screen coordinates of each vertex is noted. The lowest and 

highest points on the face are ybott and ytop. The tiler first fills in the row 

at y= ybott , then at ybott + 1, etc. At each scan line ys, there is a leftmost 

pixel xleft and a rightmost pixel xright. The toler moves from xleft to xright, 
placing the desired color in each pixel. The tiler is implemented as a 
simple double loop: 

for (int y= ybott ; y<= ytop; y++)  // for each scan line 
{ 

find xleft and xright 

for( int x= xleft ; x<= xright; x++) // fill across the scan line 
{ 

find the color c for this pixel 
put c into the pixel at (x,y) 

} 
} 

The main difference between flat and smooth shading is the 
manner in which the color c is determined in each pixel. 
4.2.1 Flat Shading 

When a face is flat, like a roof and the light sources are distant 

, the diffuse light component varies little over different points on the roof. 
In such cases we use the same color for every pixel covered by the face. 

OpenGL offers a rendering mode in which the entire face is 
drawn with the same color. In this mode, although a color is passed 

down  the  pipeline  as  part  of  each  vertex  of  the  face,  the  painting 

algorithm uses only one color value. So the command find the color c 
for this pixel is not inside the loops, but appears before the loop, setting 
c to the color of one of the vertices. 

Flat shading is invoked in OpenGL using the command 
glShadeModel(GL_FLAT); 

When objects are rendered using flat shading. The individual 

faces are clearly visible on both sides. Edges between faces actually 
appear more pronounced than they would on an actual physical object 
due to a phenomenon in the eye known as lateral inhibition. When 

there is a discontinuity across an object the eye manufactures a Mach 
Band at the discontinuity and a vivid edge is seen. 

Specular highlights are rendered poorly with flat shading 
because the entire face is filled with a color that was computed at only 

one vertex. 
4.2.2 Smooth Shading 

Smooth  shading  attempts  to  de-emphasize  edges  between 
faces by computing colors at more points on each face. The two types of 
smooth shading 

Gouraud shading 

Phong shading
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Gouraud Shading 
Gouraud shading computes a different value of c for each 

pixel. For the scan line ys  in the fig. , it finds the color at the leftmost 

pixel, colorleft, by linear interpolation of the colors at the top and bottom 
of the left edge of the polygon. For  the  same scan line the color at the 

top  is  color4,  and  that  at  the  bottom  is  color1,  so  colorleft   will  be 
calculated as 

colorleft = lerp(color1, color4,f),                            ----------(1) 
where the fraction 

 

 
 

varies between 0 and 1 as ys  varies from ybott  to y4. The eq(1) involves 
three calculations since each color quantity has a red, green and blue 
component. 

Colorright  is found by interpolating the colors at the top and 

bottom of the right edge. The tiler then fills across the scan line , linearly 

interpolating between colorleft and colorright to obtain the color at pixel x: 

C(x) = lerp 

To increase the efficiency of the fill, this color is computed 

incrementally  at  each  pixel  .  that  is  there  is  a  constant  difference 

between c(x+1) and c(x) so that 
 

 

C(x+1)=c(x)+ 
 
 

The incremented is calculated only once outside of the inner most 
loop. The code: 

for ( int y= ybott; y<=ytop ; y++)              //for each scan line 
{ 

find xleft and xright 

find colorleft and colorright 

colorinc=( colorright - colorleft) / (xright - xleft); 

for(int x= xleft, c=colorleft; x<=xright; x++, c+=colorinc) 
put c into the pixel at (x,y) 

} 
Computationally Gouraud shading is more expensive than 

flat  shading.  Gouraud  shading  is  established  in  OpenGL  using  the 
function: 

glShadeModel(GL_SMOOTH); 
When a sphere and a bucky ball are rendered using Gouraud 

shading, the bucky ball looks the same as it was rendered with flat 
shading because the same color is associated with each vertex of a face. 

But the sphere looks smoother, as there are no abrupt jumps in color 
between the neighboring faces and the edges of the faces are gone , 
replaced by a smoothly varying colors across the object.
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Continuity of color across a polygonal edge 

 

 
 

 
 

Fig.(a)   shows  two   faces  F   and  F‟  that  share  an  edge. In 

rendering F, the colors CL and CR are used and in  rendering F‟, the colors 

C‟L and C‟R are used. But since CR equals C‟L, there is no abrupt change 

in color at the edge along the scan line. 

Fig.(b) shows how Gouraud shading reveals the underlying 

surface. The polygonal surface is shown in cross section with vertices V1 

and V2. The imaginary smooth surface is also represented. Properly 

computed vertex normals m1,m2 point perpendicularly to this imaginary 
surface so that the normal for correct shading will be used at each vertex 
and the color there by found will be correct. The color is then made to 

vary smoothly between the vertices. 
Gouraud  shading  does  not  picture  highlights well because 

colors are found by interpolation. Therefore in Gouraud shading   the 
specular component of intensity is suppressed. 

 
Phong Shading 

Highlights  are  better  reproduced  using   Phong  Shading. 
Greater  realism  can  be  achieved  with  regard  to  highlights  on  shiny 

objects by a better approximation of the normal vector to the face at each 
pixel this type of shading is called as Phong Shading 

When computing Phong Shading we find the normal vector at 

each point on the face of the object and we apply the shading model 

there to fig the color we compute the normal vector at each pixel by 
interpolating the normal vectors at the vertices of the polygon. 

The fig shows a projected face with the normal vectors m1, m2,
 

m3 and m4 indicated at the four vertices.
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Interpolating normals 

 
For the scan line ys, the vectors m left and m right are found by 

linear interpolation 
 
 
 
 

 
This interpolated vector must be normalized to unit length 

before it is used in the shading formula once m left and m right  are known 
they are interpolated to form a normal vector at each x along the scan 
line that vector is used in the shading calculation to form the color at the 

pixel. 
In Phong Shading the direction of the normal vector varies 

smoothly from point to point and more closely approximates that of an 
underlying smooth surface the production of specular highlights are good 

and more realistic renderings produced. 
Drawbacks of Phong Shading 

Relatively slow in speed 

More computation is required per pixel 

Note: OpenGL does not support Phong Shading 
 
4.3 Adding texture to faces 

The realism of an image is greatly enhanced by adding surface 
texture to various faces of a mesh object. 

The basic technique begins with some texture function, 

texture(s,t) in texture space , which has two parameters s and t. The 
function texture(s,t) produces a color or intensity value for each value of 

s and t between 0(dark)and 1(light). The two common sources of textures 
are 

Bitmap Textures 

Procedural Textures
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Bitmap Textures 
Textures are formed from bitmap representations of images, 

such as digitized photo. Such a representation consists of an array 

txtr[c][r] of color values. If the array has C columns and R rows, the 
indices  c  and  r  vary  from  0  to  C-1  and  R-1  resp.,.  The  function 
texture(s,t) accesses samples in the array as in the code: 

Color3 texture (float s, float t) 
{ 

return txtr[ (int) (s * C)][(int) (t * R)]; 
} 

Where Color3 holds an RGB triple. 
Example: If R=400 and C=600, then the texture (0.261, 0.783) 

evaluates to txtr[156][313]. Note that a variation in s from 0 to 1 

encompasses 600 pixels, the variation in t encompasses 400 pixels. To 
avoid distortion during rendering , this texture must be mapped onto a 

rectangle with aspect ratio 6/4. 
 
Procedural Textures 

Textures are defined by a mathematical function or procedure. 
For example a spherical shape could be generated by a function: 

float fakesphere( float s, float t) 
{ 

float r= sqrt((s-0.5) * (s-0.5)+ (t-0.5) * (t-0.5)); 
if (r < 0.3) return 1-r/0.3;        //sphere intensity 
else return 0.2;                       //dark background 

} 

This function varies from 1(white) at the center to 0 (black) at 
the edges of the sphere. 
4.3.1 Painting the Textures onto a Flat Surface 

Texture space is flat so it is simple to paste texture on a flat
surface.  

Mapping texture onto a planar polygon
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The fig. shows a texture image mapped to a portion of a planar 
polygon,F. We need to specify how to associate points on the texture with 

points on F. 
In OpenGL we use the function glTexCoord2f() to associate a 

point  in  texture  space  Pi=(si,ti)  with  each  vertex  Vi   of  the  face.  the 
function glTexCoord2f(s,t)sets the current texture coordinate to (s,y). All 
calls to glVertex3f() is called after a call to glTexCoord2f(), so each vertex 

gets a new pair of texture coordinates. 
Example  to  define  a  quadrilateral  face  and  to  position  a 

texture on it, we send OpenGL four texture coordinates and four 3D 

points, as follows: 

 

glEnd();  
Mapping a Square to a Rectangle

 
 
 
 
 



CS2401 Computer Graphics Unit IV 

23 

 

 

 
 
 
 
 

 

The fig. shows the a case where the four corners of the texture 
square are associated with the four corners of a rectangle. In this 
example, the texture is a 640-by-480 pixel bit map and it is pasted onto 

a rectangle with aspect ratio 640/480, so it appears without distortion. 

 
Producing repeated textures
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The fig. shows the use of texture coordinates , that tile the 
texture, making it to repeat. To do this some texture coordinates that lie 

outside the interval[0,1] are used. When rendering routine encounters a 
value of s and t outside the unit square, such as s=2.67, it ignores the 
integral part and uses only the fractional part 0.67. A point on a face 

that requires (s,t)=(2.6,3.77) is textured with texture (0.6,0.77). 
The points inside F will be filled with texture values lying 

inside P, by finding the internal coordinate values (s,t) through the use of 
interpolation. 

 
Adding Texture Coordinates to Mesh Objects 

A mesh objects has three lists 

The vertex list 

The normal vector list 

The face list 
We need to add texture coordinate to this list, which stores 

the coordinates (si, ti) to be associated with various vertices. We can  add 
an array of elements of the  type 

class TxtrCoord(public : float s,t;); 

to  hold  all  of  the  coordinate  pairs  of  the  mesh.  The  two  important 
techniques to treat texture for an object are: 

1.  The mesh object consists of a small number of flat faces, and 

a different texture is to be applied to each. Each face has only a 
sigle normal vector, but its own list of texture coordinates. So the 

following data are associated with each face: 

the number of vertices in the face. 

the index of normal vector to the face. 

a list of indices of the vertices. 

a list of indices of the texture coordinates. 

2.  The mesh represents a smooth underlying object and a single 

texture is to wrapped around it. Each vertex has associated with it 
a specific normal vector and a particular texture coordinate pair. A 
single index into the vertex, normal vector and texture lists is used 

for each vertex. The data associated with the face are: 

the number of vertices in the face. 

list of indices of the vertices. 

 
4.3.2 Rendering the Texture 

Rendering texture in a face F is similar to Gouraud Shading. It 

proceeds across the face pixel by pixel. For each pixel it must determine 
the corresponding texture coordinates (s,t), access the texture and set 
the pixel to the proper texture color. Finding the coordinated (s,t) should 

be done carefully.
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Rendering a face in a camera snapshot 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The fig shows 

the camera taking a snapshot of a face F with texture pasted onto it 

and the rendering in progress. The scan line y is being filled from xleft     

to xright. For each x along this   scan line, we compute the correct 

position on the face and from that , obtain the correct position (s*, t*) 
within the texture. 

Incremental calculation of texture coordinates 
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We compute (sleft,tleft) and (sright,tright) for each scan line in a rapid 
incremental fashion and to interpolate between these values, moving 
across these scan lines. Linear interpolation produces some distortion in 

the texture. This distortion is disturbing in an animation when the 
polygon  is  rotating.  Correct  interpolation  produces  an  texture  as  it 

should be. In an animation this texture would appear to be firmly 
attached to the moving or rotating face.
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Lines in one space map to lines in another 
 
 
 
 
 
 
 
 
 
 
 
 

Affine and projective transformations preserve straightness, so line 

Le in eye space projects to line Ls in screen space, and similarly the texels 

we wish to draw on line Ls lie along the line Lt in texture spaces, which 

maps to Le. 
The question is : if we move in equal steps across Ls on the screen, 

how should we step across texels along Lt in texture space? 
How does motion along corresponding lines operate? 

 
 

The fig. shows a line AB in 3D being transformed into the line ab in 
3D by the matrix M. A maps to

 a, B maps to b. Consider the point R(g) 

that lies a fraction g of the way between A and B. This point maps to 
some point r(f) that lies a fraction f of the way from a to b. The fractions f 

and g are not the same. The question is, As f varies from 0 to 1, how 
exactly does g vary? How does motion along ab correspond to motion 
along AB? 

 
Rendering Images Incrementally 

We now find the proper texture coordinates (s,t) at each point on 
the face being rendered. 

Rendering the texture on a face
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The fig. shows the face of a barn. The left edge of the projected face 

has endpoints a and b. The face extends from xleft to xright across scan line 

y.  We  need  to  find  appropriate  texture  coordinates  (sleft,  tleft)  and 

(sright, tright) to attach to xleft  and xright, which we can then interpolate 
across the scan line 

Consider finding sleft(y), the value of sleft  at scan line y.We know 
that texture coordinate sA  is attached to point a and sB  is attached to 
point b. If the scan line at y is a fraction f of the way between ybott  and 
ytop so that f=(y – ybott)/ (ytop – ybott), the proper texture coordinate to use 
is 

 
 
 

 
and similarly for tleft. 

 

Implications for the Graphics Pipeline 
 
 
 
 

 
The shows a refinement of the pipeline. Each vertex V is 

associated with  a texture pair (s,t) and a vertex normal. The vertex is 

transformed by the modelview matrix, producing vertex A=(A1, A2, A3) 
and a normal n‟ in eye  coordinates. 

 

Shading calculations are done using this normal, producing the 

color c=(cr, cg, cb). The texture coordinates (sA, tA) are attached to A. 

Vertex  A  then  goes  perspective  transformation,  producing  a  =(a1,a2, 

a3,a4). The texture coordinates and color c are not altered. 
Next clipping against the view volume is done. Clipping can cause 

some vertices to disappear and some vertices to be formed. When a 

vertex D is created, we determine its position (d1, d2, d3, d4) and attach it 
to  appropriate  color  and  texture  point.  After  clipping  the  face  still 
consists of a number of verices, to each of which is attached a color and 

a texture point. For a point A, the information is stored in the array (a1, 

a2, a3, a4, sA, tA, c,1). A final term of 1 has been appended; this is used in 
the next step.
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Perspective division is done, we need hyberbolic interpolation 

so we divide every term in the array that we wish to interpolate 

hyperbolically by a4, to obtain the array (x, y, z, 1, sA/a4, t4/a4, c, 1/a4). 

The first three components of the array (x, y, z)=(a1/a4, a2/a4, a3/a4). 
Finally, the rendering routine receives the array (x, y, z, 1, sA/a4, 

t4/a4, c, 1/a4) for each vertex of the face to be rendered. 
 
4.3.3 What does the texture Modulate? 

There are three methods to apply the values in the texture map in 
the rendering calculations 
Creating a Glowing Object 

This is the simplest method. The visibility intensity I is set equal to 

the texture value at each spot: 
I=texture(s,t) 

The object then appears to emit light or glow. Lower texture values 

emit less light and higher texture values emit more light. No additional 

lighting calculations are needed. OpenGL does this type of texturing 
using 

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, 
GL_REPLACE); 

 
Painting the Texture by Modulating the Reflection Coefficient 

The color of an object is the color of its diffuse light component. 

Therefore we can make the texture appear to be painted onto the surface 

by varying the diffuse reflection coefficient. The texture function 
modulates the value of the reflection coefficient from point to point. We 
replace eq(1) with 

I= texture(s,t) [Ia ρa   + Id ρd × lambert ]+ Isp ρs × phongf 

For appropriate values of s and t. Phong specular reflections are 
the color of the source and not the object so highlights do not depend on 
the texture. OpenGL does this type of texturing using 

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, 
GL_MODULATE); 

 
Simulating Roughness by Bump Mapping 

Bump  mapping  is  a  technique  developed  by  Blinn,    to  give  a 
surface a wrinkled or dimpled appearance without struggling to model 

each dimple itself. One problem associated with applying bump mapping 
to a surface like a teapot is that since the model does not contain the 
dimples , the object‟s outline caused  by  a shadow does not show dimples 

and it is smooth along each face. 

The  goal  is  to  make  a  scalar  function  texture(s,t)  disturb  the 
normal vector at each spot in a controlled fashion. This disturbance 
should depend only on the shape of the surface and the texture.
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On the nature of bump mapping 
 

 
 
 
 
 
 
 
 
 
 

The  fig.  shows  in  cross  section  how  bump  mapping  works. 
Suppose the surface is represented parametrically by the function P(u,v) 
and has unit normal vector m(u,v). Suppose further that the 3D point 

at(u*,v*) corresponds to texture at (u*,v*). 
Blinn‟s method  simulates  perturbing  the  position  of   the  true 

surface in the direction of the normal vector by an amount proportional 

to the texture (u*,v*);that is 
P‟(u*,V*) = P(u*,v*)+texture(u*,v*)m(u*,v*). 

Figure(a) shows how this techniques adds  wrinkles to the surface. The 
disturbed surface has a new   normal vector m‟(u*,v*)at  each point. The 

idea is to use this disturbed normal as if it were “attached” to the original 

undisturbed surface at each point, as shown in figure (b). Blinn has 
demonstrated that a good  approximation to m‟(u*,v*) is given by 

m‟(u*,v*) =m(u*,v*)+d(u*,v*) 

Where the perturbation vector d is given by 
d(u*,v*) = (m X pv) textureu – (m X pu) texturev. 

In which textureu, and texturev are partial derivatives of the texture 
function with respect to u and v respectively. Further pu  and pv  are 
partial  derivative  of  P(u,v)  with  respect  to  u  and  v,  respectively.  all 
functions are evaluated at(u*,V*).Note that the perturbation function 
depends only on the partial derivatives of the texture(),not on 
texture()itself. 
4.3.4 Reflection Mapping 

This technique is used to improve the realism of pictures , 
particularly animations. The basic idea is to see reflections in an object 
that suggest the world surrounding that object. 

The two types of reflection mapping are 

   Chrome mapping 
A rough and blurry image that suggests the surrounding 

environment is reflected in the object as you would see in an object 
coated with chrome. 

   Environment mapping 

A recognizable image of the surrounding environment is seen 

reflected in the object. Valuable visual clues are got from such 
reflections particularly when the object is moving.
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4.4 ADDING SHADOWS OF OBJECTS 
Shadows make an image more realistic. The way one object casts a 

shadow on another object gives important visual clues as to how the two 

objects are positioned with respect to each other. Shadows conveys lot of 
information as such, you are getting a second look at the object from the 
view point of the light source. There are two methods for computing 

shadows: 

Shadows as Texture 

Creating shadows with the use of a shadow buffer 

4.4.1 Shadows as Texture 
The    technique  of   “painting“ shadows  as  a  texture  works  for 

shadows that are cast onto a flat surface by a point light source. The 
problem is to compute the shape of the shadow that is cast. 

Computing the shape of a shadow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig(a) shows a box casting a shadow onto the floor. The shape of the 
shadow is determined by the projections of each of the faces of the box 
onto the plane of the floor, using the light source as the center of 

projection. 

Fig(b) shows the superposed projections of  two of the faces. The 
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top  faces projects to top‟ and the front face  to front‟. 

This provides the key to drawing the shadow. After drawing the 

plane by the use of ambient, diffuse and specular light contributions, 
draw the six  projections of the box‟s  faces on  the plane, using only  the 

ambient light. This technique will draw the shadow in the right shape 

and color. Finally draw the box. 
Building the “Projected” Face 

To  make the new   face   F‟ produced by  F,  we  project each of  the 

vertices of F onto the plane. Suppose that the plane passes through point 
A and has a normal vector n. Consider projecting vertex V, producing V‟. 

V‟  is  the point where the ray from source at S through V hits the plane, 

this point is
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4.4.2 Creating Shadows with the use of a Shadow buffer 
This method uses a variant of the depth buffer that performs the 

removal of hidden surfaces. An auxiliary second depth buffer called a 
shadow buffer is used for each light source. This requires lot of memory. 

This method is based on the principle that any points in a scene 
that are hidden from the light source must be in shadow. If no object lies 
between a point and the light source, the point is not in shadow. 

The shadow buffer contains a depth picture of the scene from the 
point of view of the light source. Each of the elements of the buffer 

records  the  distance  from  the  source  to  the  closest  object  in  the 
associated direction. Rendering is done in two stages: 
1) Loading the shadow buffer 

The 

shadow  buffer  is  initialized  with 1.0 in each element, the largest 
pseudodepth possible. Then through a camera positioned at the light 

source, each of the scene is rasterized but only the pseudodepth of the 
point on the face is tested. Each element of the shadow buffer keeps 
track of the smallest pseudodepth seen so far. 

Using the shadow buffer 
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The fig. shows a scene being viewed by the usual eye camera 

and a source camera located at the light source. Suppose that point P is 
on the ray from the source through the shadow buffer pixel d[i][j] and 
that point B on the pyramid is also on this ray. If the pyramid is present 

d[i][j] contains the pseudodepth to B; if the pyramid happens to be 
absent d[i][j] contains the pseudodepth to P. 

The shadow buffer calculation is independent of the eye position, 

so in an animation in which only the eye moves, the shadow buffer is 
loaded only once. The shadow buffer must be recalculated whenever the 
objects move relative to the light source. 

2) Rendering the scene 
Each face in the scene is rendered using the eye camera. 

Suppose the eye camera sees point P through pixel p[c][r]. When 
rendering p[c][r], we need to find
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the pseudodepth D from the source to p 

the index location [i][j] in the shadow buffer that is to be tested 
and 

   the value d[i][j] stored in the shadow buffer 
If d[i][j] is less than D, the point P is in the shadow and p[c][r] is 

set using only ambient light. Otherwise P is not in shadow and p[c][r] is 
set using ambient, diffuse and specular light. 

 

 
 

4.5 BUILDING A CAMERA IN A PROGRAM 

To have a finite control over camera movements, we create and 
manipulate our own camera in a program. After each change to this 
camera is made, the camera tells OpenGL what the new camera is. 

We create a Camera class that does all things a camera does. In 
a program we create a Camera object called cam, and adjust it with 
functions such as the following: 

 
cam.set(eye, look, up);          // initialize the camera 

cam.slide(-1, 0, -2);     //slide the camera forward and to the left 
cam.roll(30);               // roll it through 30 degree 
cam.yaw(20);              // yaw it through 20 degree 

 
The Camera class definition: 

 
class Camera { 

private: 

Point3 eye; 
Vector3 u, v, n; 
double viewAngle, aspect, nearDist, farDist; //view volume shape 
void setModelViewMatrix();   //tell OpenGL where the camera is 

public: 
 

 
 
 
 
 
 
 
 
 

}; 

 

 

Camera();                             //default constructor 
void set(Point3 eye, Point3 look, Vector3 up);    //like gluLookAt() 

void roll(float, angle);            //roll it 
void pitch(float, angle);         // increase the pitch 
void yaw(float, angle);           //yaw it 

void slide(float delU, float delV, float delN);       //slide it 
void setShape(float vAng, float asp, float nearD, float farD);

 

The Camera class definition contains fields for eye and the 
directions u, v and n. Point3 and Vector3 are the basic data types. It also 

has fields that describe the shape of the view volume: viewAngle, aspect, 
nearDist and farDist.
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The utility routine setModelViewMatrix() communicates the 
modelview matrix to OpenGL. It is used only by member functions of the 
class and needs to  be  called after each change is  made to  the camera‟s 

position. The matrix 

u x         u y         u z         d x 

V        
vx          v y         vz          d y 

nx          n y         nz          d z 

0       0       0       0 

This matrix V accounts for the transformation of world points 

into camera coordinates. The utility routine computes the matrix V on 
the basis of current values of eye, u ,v and n and loads the matrix 
directly into the modelview matrix using glLoadMatrixf(). 

 
The utility routines set() and setModelViewMatrix() 

 
void Camera :: setModelViewMatrix(void) 

{ //load modelview matrix with existing camera values 
float m[16]; 
Vector3 eVec(eye.x, eye.y, eye.z);    //a vector version of eye 

m[0]= u.x ; m[4]= u.y ; m[8]=   u.z ;   m[12]= -eVec.dot(u); 

m[1]= v.x  ; m[5]= v.y ; m[9]=   v.z ;   m[13]= -eVec.dot(v); 
m[2]= n.x ; m[6]= n.y ; m[10]= y.z ;   m[14]= -eVec.dot(n); 
m[3]= 0    ; m[7]= 0    ; m[11]= 0   ;   m[15]= 1.0              ; 

glMatrixMode(GL_MODELVIEW); 
glLoadMatrixf(m);                 //load OpenGL‟s modelview matrix 

} 
void Camera :: set (Point3 eye, Point3 look, Vector3 up) 

{ // Create a modelview matrix and send it to OpenGL 
eye.set(Eye);                                  // store the given eye position 
n.set(eye.x – look.x, eye.y – look.y, eye.z – look.z);      // make n 

u.set(up.cross(n));                          //make u= up X n 

n.normalize();                                // make them unit length 
u.normalize(); 
v.set(n.cross(u));                            // make v= n X u 
setModelViewMatrix();                    // tell OpenGL 

} 

 
The method set() acts like gluLookAt(): It uses the values of eye, 

look and up to compute u, v and n according to equation: 
n= eye – look, 

u = up X n 
and 
v = n X u. It places this information in  the camera‟s fields and 

communicates it to OpenGL.
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The  routine  setShape()  is  simple.  It  puts  the  four  argument 
values into the appropriate camera fields and then calls 

gluPerspective(viewangle, aspect, nearDist, farDist) 
along with 

glMatrixMode(GL_PROJECTION)
and  

glLoadIdentity()
to set the projection matrix. 

The central camera functions are slide(), roll(), yaw() and pitch(), 
which makes relative changes to the camera‟s position and orientation. 

4.5.1 Flying the camera 
The  user  flies  the  camera  through  a  scene  interactively  by 

pressing keys or clicking the mouse. For instance, 

pressing u will slide the camera up some amount 

pressing y will  yaw the camera to the left 

pressing f will slide the camera forward 
The user can see different views of the scene and then changes 

the camera to a better view and produce a picture. Or the user can fly 
around a scene taking different snapshots. If the snapshots are stored 
and then played back, an animation is produced of the camera flying 
around the scene. 

There are six degrees of freedom for adjusting a camera: It can be 

slid in three dimensions and it can be rotated about any of three 

coordinate axes. 
Sliding the Camera 

Sliding the camera means to move it along one of its own axes 
that is, in the u, v and n direction without rotating it. Since the camera is 
looking along the negative n axis, movement along n is forward or back. 
Movement along u is left or right and along v is up or down. 

To move the camera a distance D along its u axis, set eye to eye + 
Du. For convenience ,we can combine the three possible slides in a single 

function: 
slide(delU, delV, delN) 

slides the camera amount delU along u, delV along v and delN along n. 

The code is as follows: 
 
void Camera : : slide(float delU, float delV, float delN) 
{ 

eye.x += delU * u.x + delV * v.x + delN * n.x; 
eye.y += delU * u.y + delV * v.y + delN * n.y; 
eye.z += delU * u.z + delV * v.z  + delN * n.z; 

setModelViewMatrix(); 

}
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Rotating the Camera 
Roll, pitch and yaw the camera , involves a rotation of the camera 

about one of its own axes. 
To roll the camera we rotate it about its own n-axis. This means 

that both the directions u and v must be rotated as shown in fig. 
Rolling the camera 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Two new  axes are formed u‟ and v‟ that lie in  the same plane as u 

and v, and have been rotated through the angle α radians. 

We form u‟ as the appropriate linear combination of u and v and 

similarly for v‟: 

u‟ = cos  (α)u + sin(α)v ; 

v‟ = -sin (α)u  + cos(α)v 
The  new  axes u‟ and v‟  then replace u and v respectively in the 

camera. The angles are measured in degrees. 
Implementation of roll() 

 
void Camera :: roll (float angle) 
{ // roll the camera through angle degrees 

float cs = cos (3.14159265/180 * angle); float 
sn = sin (3.14159265/180 * angle); Vector3 t = 
u;                       //remember old u 
u.set(cs * t.x – sn * v.x , cs * t.y – sn * v.y, cs * t.z – sn * v.z); 

v.set(sn * t.x + cs * v.x , sn * t.y + cs * v.y, sn * t.z + cs * v.z); 

setModelViewMatrix(); 
} 
Implementation of pitch() 

 
void Camera :: pitch (float angle) 
{ // pitch the camera through angle degrees around U 

float cs = cos(3.14159265/180 * angle); 
float sn = sin(3.14159265/180 * angle); 
Vector3 t(v); // remember old v 
v.set(cs*t.x - sn*n.x, cs*t.y - sn*n.y, cs*t.z - sn*n.z); 

n.set(sn*t.x + cs*n.x, sn*t.y + cs*n.y, sn*t.z + cs*n.z); 
setModelViewMatrix(); 

}
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Implementation of yaw() 
 
void Camera :: yaw (float angle) 
{ // yaw the camera through angle degrees around V 

float cs = cos(3.14159265/180 * angle); 
float sn = sin(3.14159265/180 * angle); 
Vector3 t(n); // remember old v 

n.set(cs*t.x - sn*u.x, cs*t.y - sn*u.y, cs*t.z - sn*u.z); 
u.set(sn*t.x + cs*u.x, sn*t.y + cs*u.y, sn*t.z + cs*u.z); 
setModelViewMatrix(); 

} 

 
The Camera class can be used with OpenGL to fly a camera 

through a scene. The scene consists of only a teapot. The camera is a 

global  object  and  is  set  up  in  main().  When  a  key  is  pressed 
myKeyboard() is called and the camera is slid or rotated, depending on 
which key was pressed. 

For instance, if P is pressed, the camera is pitched up by 1 

degree. If CTRL F is pressed , the camera is pitched down by 1 degree. 
After the keystroke has been processed, glutPostRedisplay() causes 
myDisplay() to be called again to draw the new picture. 

This application uses double buffering to produce a fast and 
smooth transition between one picture and the next. Two memory buffers 

are used to store the pictures that are generated. The display switches 
from showing one buffer to showing the other under the control of 

glutSwapBuffers(). 

 
Application to fly a camera around a teapot 

 
#include “camera.h” 

Camera cam;                 //global camera object 

//---------------------- myKeyboard------------------------------- 
void myKeyboard(unsigned char key, int x, int y) 
{ 

switch(key) 
{ 

//controls for the camera 
case „F‟:                                                           //slide camera forward 

cam.slide(0, 0, 0.2); 
break; 

case „F‟-64:                                      //slide camera back 
cam.slide(0, 0,-0.2); 
break;

case „P‟:  
cam.pitch(-1.0); 
break;
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case „P‟-64: 

cam.pitch(1.0); 

break; 
//add roll and yaw controls 
} 

glutPostRedisplay();                //draw it again 
} 

//--------------------------myDisplay------------------------------ 
void myDisplay(void) 
{ 

glClear(GL_COLOR_BUFFER_BIT |GL_DEPTH_BUFFER_BIT); 
glutWireTeapot(1,0);             // draw the teapot 
glFlush(); 
glutSwapBuffers();                //display the screen just made 

} 

//--------------------------main---------------------------- 
void main(int argc, char  **argv) 
{ 

glutInit(&argc, argv); 
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); //double buffering 

glutInitWindowSize(640, 480); 

glutInitWindowPosition(50, 50); 
glutCreateWindow(“fly a camera around a teapot”); 

glutKeyboardFunc(myKeyboard); 
glutDisplayFunc(myDisplay); 

glClearColor(1.0f, 1.0f, 1.0f, 1.0f);                       //background is white 
glColor3f(0.0f, 0.0f, 0.0f);                                   //set color of stuff 
glViewport(0, 0, 640, 480); 

cam.set(4, 4, 4, 0, 0, 0, 0, 1, 0);                //make the initial camera 
cam.setShape(30.0f, 64.0f/48.0f, 0.5f, 50.0f); 
glutMainLoop(); 

}
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UNIT V   FRACTALS 
Fractals and Self similarity – Peano curves – Creating image by 

iterated functions –Mandelbrot sets – Julia Sets – Random Fractals – 

Overview of Ray Tracing –Intersecting rays with other primitives – Adding 
Surface texture – Reflections and Transparency – Boolean operations on 
Objects 

 
Computers are good at repetition. In addition, the high precision with 
which modern computers can do calculations allows an algorithm to take 
closer look at an object, to get greater levels of details. 

Computer graphics can produce pictures of things that do not even 

exist in nature or perhaps could never exist. We will study the inherent 

finiteness of any computer generated picture. It has finite resolution and 
finite size, and it must be made in finite amount of time. The pictures we 
make can only be approximations, and the observer of such a picture 

uses it just as a hint of what the underlying object really looks like. 
 
5.1 FRACTALS AND SELF-SIMILARITY 

Many of the curves and pictures have a particularly important 
property called self-similar. This means that they appear the same at 

every scale: No matter how much one enlarges a picture of the curve, it 
has the same level of detail. 

Some  curves  are  exactly  self-similar,  whereby  if  a  region  is 
enlarged the enlargement looks exactly like the original. 

Other curves are statistically self-similar, such that the wiggles 

and irregularities in the curve are the same “on the average”, no matter 
how many times the picture is enlarged. Example: Coastline. 

 
5.1.1 Successive Refinement of Curves 

A  complex  curve  can  be  fashioned  recursively  by  repeatedly 
“refining”  a  simple  curve.  The  simplest  example  is  the  Koch  curve, 

discovered in1904 by the Swedish mathematician Helge von Koch. The 
curve produces an infinitely long line within a region of finite area. 

Successive generations of the Koch curve are denoted K0, K1, 
K2….The zeroth generation shape K0 is a horizontal line of length unity. 

Two generations of the Koch curve 
 

 
To create K1 , divide the line K0 into three equal parts and replace 

the middle section with a triangular bump having sides of length 1/3.
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The total length of the line is 4/3. The second order curve K2, is formed 
by building a bump on each of the four line segments of K1. 
To form Kn+1 from Kn: 

Subdivide each segment of Kn  into three equal parts and replace 
the middle part with a bump in the shape of an equilateral triangle. 

In this process each segment is increased in length by a factor of 
4/3, so the total length of the curve is 4/3 larger than that of the 

previous generation. Thus Ki  has total length of (4/3)i , which increases 
as i increases. As i tends to infinity, the length of the curve becomes 

infinite. 
 

The first few generations of the Koch snowflake 
 
 
 
 

 

The Koch snowflake of the above figure is formed out of three Koch 

curves joined together. The perimeter of the ith generations shape Si is 
three times length of a Koch curve and so is 3(4/3)i , which grows forever 

as i increases. But the area inside the Koch snowflake grows quite 

slowly. So the edge of the 
Koch snowflake gets rougher and rougher and longer and longer, but 
the area remains bounded. 

Koch snowflake s3, s4 and s5 

 

The Koch curve Kn  is self-similar in the following ways: Place 

a small window about some portion of Kn, and observe its ragged shape. 
Choose a window a billion times smaller and observe its shape. If n is 
very large, the curve appears to be have same shape and roughness. 

Even if the portion is enlarged another billion times, the shape would be 
the same. 

 
5.1.2 Drawing Koch Curves and Snowflakes 

The  Koch  curves  can  be  viewed  in  another  way:  Each 

generation consists of four versions of the previous generations. For 

instance K2  consists of four versions of K1 tied end to end with certain 
angles between them.
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We call n the order of the curve Kn, and we say the order –n 
Koch curve consists of four versions of the order (n-1) Koch curve.To 
draw K2  we draw a smaller version of K1  , then turn left 60  , draw K1 

again, turn right 120  , draw K1 a third time. For snowflake this routine is 

performed just three times, with a 120  turn in between. 

The recursive method for drawing any order Koch curve is 
given in the following pseudocode: 

To draw Kn: 
 

 

if ( n equals 0 ) Draw a straight line; 
else {

Draw Kn-1; 
Turn left 60  ; 

 
Draw Kn-1; 
Turn right 120  ; 

 

Draw Kn-1; 
Turn left 60  ; 

Draw Kn-1; 
} 

Drawing a Koch Curve 
Void drawKoch (double dir, double len, int n) 
{ 

// Koch to order n the line of length len 
// from CP in the direction dir 

 
double dirRad= 0.0174533 * dir;      // in radians 
if (n ==0) 

lineRel(len * cos(dirRad), len * sin(dirRad)); 
else { 

n--;                   //reduce the order 

len /=3;            //and the length 
drawKoch(dir, len, n); 
dir +=60; 

drawKoch(dir, len, n); 

dir -=120; 
drawKoch(dir, len, n); 
dir +=60; 

drawKoch(dir, len, n); 
} 

} 
The routine drawKoch() draws Kn  on the basis of a parent 

line of length len that extends from the current position in the direction
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dir. To keep track of the direction of each child generation, the parameter 
dir is passed to subsequent calls of Koch(). 

 
5.3 Creating An Image By Means of Iterative Function Systems 

Another   way   to   approach   infinity   is   to   apply   a 
transformation to a picture again and again and examine the results. 
This technique also provides an another method to create fractal shapes. 

 

 
 

5.3.1 An Experimental Copier 

We take an initial image I0  and put it through a special 

photocopier that produces a new image I1. I1 is not a copy of I0 rather it is 

a superposition of several reduced versions of I0. We then take I1  and 

feed it back into the copier again, to produce image I2. This process is 

repeated , obtaining a sequence of images I0, I1, I2,… called the orbit of 

I0. 

Making new copies from old 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In  general  this  copier  will  have N lenses, each of which 

perform an affine mapping and then adds its image to the output. The 
collection of the N affine transformations is called an “iterated function 

system”. 

An iterated function system is a collection of N affine 

transformations Ti, for i=1,2,…N. 
5.3.2 Underlying Theory of the Copying Process 

Each lens in the copier builds an image by transforming 

every point in the input image and drawing it on the output image. A 
black and white image I can be described simply as the set of its black 

points: 
I = set of all black points = { (x,y) such that (x,y) is colored black } 

I is the input image to the copier. Then the ith lens 

characterized by transformation Ti, builds a new set of points we denote 

as Ti(I)  and  adds  them  to  the  image  being produced at the current 

iteration. Each added set Ti(I) is the set of all transformed points I: 
Ti(I) = { (x’,y’) such that (x’,y’) = Ti(P) for some point P in I }
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Upon superposing the three transformed images, we obtain 
the output image as the union of the outputs from the three lenses: 

Output image = T1(I) U T2(I) U T3(I) 
The overall mapping from input image to output image as 

W(.). It maps one set of points – one image – into another and is given by: 
W(.)=T1(.) U T2(.) U T3(.) 

For instance the copy of the first image I0 is the set W(I0). 

Each  affine  map  reduces  the  size  of  its  image  at  least 
slightly, the orbit converge to a unique image called the attractor of the 
IFS.  We  denote  the  attractor  by  the  set  A,  some  of  its  important 

properties are: 
1. The attractor set A is a fixed point of the mapping W(.), which we 

write  as  W(A)=A.  That  is  putting  A  through  the  copier  again 
produces exactly the same image A. 

The iterates have already converged to the set A, so iterating 
once more makes no difference. 

2. Starting with any input image B and iterating the copying process 

enough times, we find that the orbit of images always converges to 
the same A. 

If Ik = W (k)(B) is the kth iterate of image B, then as k goes to 
infinity Ik becomes indistinguishable from the attractor A. 

5.3.3 Drawing the kth Iterate 
We use graphics to display each of the iterates along the 

orbit. The initial image I0 can be set, but two choices are particularly 
suited to the tools developed: 

I0 is a polyline. Then successive iterates are collections of polylines. 

I0 is a single point. Then successive iterates are collections of 

points. 
Using a polyline for I0  has the advantage that you can see 

how each polyline is reduced in size in each successive iterate. But 
more memory and time are required to draw each polyline and finally 
each polyline is so reduced as to be indistinguishable from a point. 

Using a single point for I0 causes each iterate to be a set of 
points, so it is straight forward to store these in a list. Then if IFS 

consists of N affine maps, the first iterate I1  consists of N points, 

image I2 consists of N2 points, I3 consists of N3 points, etc. 
Copier Operation pseudocode(recursive version) 

 
void superCopier( RealPolyArray pts, int k) 
{ //Draw kth iterate of input point list pts for the IFS 

int i; 
RealPolyArray newpts;            //reserve space for new list 

if(k==0) drawPoints(pts); 
else for(i=1; i<=N; i++)             //apply each affine 
{
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newpts.num= N * pts.num;   //the list size grows fast 
for(j=0; j<newpts.num; j++)   //transforms the jth point 

transform(affines[i], pts.pt[j], newpts.pt[j]); 
superCopier(newpts, k – 1); 

} 
} 

If k=0 it draws the points in the list 

If k>0 it applies each of the affine maps Ti, in turn, to all of the 
points, creating a new list of points, newpts, and then calls 
superCopier(newpts, k – 1); 

To implement the algorithm we assume that the affine maps 
are stored in the global array Affine affines[N]. 
Drawbacks 

Inefficient 

Huge amount of memory is required. 
5.3.4 The Chaos Game 

The Chaos Game is a nonrecursive way to produce a picture 

of the attractor of an IFS. 
The process for drawing the Sierpinski gasket 

Set corners of triangle :p[0]=(0,0), p[1]=(1,0), p[2]=(.5,1) 
Set P to one of these, chosen randomly; 
do { 

Draw a dot at P; 

Choose one of the 3 points at random; 
Set newPt to the midpoint of P and the chosen point; 

Set P= newPt; 
} while(!bored); 

A point P is transformed to the midpoint of itself and one of 
the three fixed points: p[0], p[1] or p[2]. The new point is then drawn as a 
dot and the process repeats. The picture slowly fills in as the sequence of 
dots is drawn. 

The key is that forming a midpoint based on P is in fact 
applying an affine transformation. That is 

P = 
1  

( P + p[…])        (find the midpoint of P and p[..]) 
2 

Can be written as 

1 
1

P = P  2 

0 
1   

+ 
2

 

2 

p[..]

So that P is subjected to the affine map, and then the transformed 
version is written back into P. The offset for this map depends on which 
point p[i[ is chosen.
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Drawing the Sierpinski gasket 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

One of the three affine maps is chosen at random each time, 
and the previous point P is subjected to it. The new point is drawn and 

becomes the next point to be transformed. 
Also listed with each map is the probability pri that the map 

is chosen at each iteration. 
Starting with a point P0, the sequence of iterations through 

this system produces a sequence of points P0, P1,.., which we call the 

orbit  of  the  system  with  starting  point  P0.  This  is  a  random  orbit, 
different points are visited depending on the random choices made at 
each iteration. 

The idea behind this approach is that the attractor consists 
of all points that are reachable by applying a long sequence of affines in 

the IFS. The randomness is invoked to ensure that the system is fully 

exercised, that every combination of affine maps is used somewhere in 
the process. 

Pseudocode for playing the Chaos Game 
void chaosGame(Affine aff[], double pr[], int N) 
{ 

RealPoint P = { 0,0 ,0,0};                //set some initial point 
int index; 
do { 

index = chooseAffine(pr , N);   // choose the next affine 

P = transform(aff[ondex], P); 
drawRealDot(P);                    // draw the dot 

} while (!bored); 

} 
The  function  chaosGame()  plays  the  chaos  game.  The 

function draws the attractor of the IFS whose N transforms are stored in 
the array aff[]. The probabilities to be used are stored in an array pr[]. At 
each iteration  one  of  the  N  affine  maps is chosen randomly by the 

function chooseAffine() and is used to transform the previous point into 
the next point. 
Adding Color 

The pictures formed by playing the Chaos Game are bilevel, 
black dots on a white background. It is easy to extend the method so
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that it draws gray scale and color images of objects. The image is viewed 
as a collection of pixels and at each iteration the transformed point lands 

in  one  of  the  pixels.  A  counter  is  kept  for  each  pixel  and  at  the 
completion of the game the number of times each pixel has been visited 
is converted into a color according to some mapping. 

 
5.3.4 Finding the IFS; Fractal Image Compression 

Dramatic levels of image compression provide strong 

motivation for finding an IFS whose attractor is the given image. A image 
contains million bytes of data, but it takes only hundreds or thousands 
of bytes to store the coefficients of the affine maps in the IFS. 

Fractal Image Compression and regeneration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The original image is processed to create the list of affine 
maps, resulting in a greatly compressed representation of the image. 

In the decompression phase the list of affine maps is used 
and an algorithm such as the Chaos Game reconstructs the image. This 

compression scheme is lossy, that is the image I’ that is generated by the 
game during decompression is not a perfect replica of the original image 

I. 

 
5.4 THE MANDELBROT SET 

Graphics provides a powerful tool for studying a fascinating 
collection of sets that are the most complicated objects in mathematics. 

Julia and Mandelbrot sets arise from a branch of analysis 

known as iteration theory, which asks what happens when one iterates a 
function endlessly. Mandelbrot used computer graphics to perform 

experiments. 
5.4.1 Mandelbrot Sets and Iterated Function Systems 

A view of the Mandelbrot set is shown in the below figure. It 
is the black inner portion, which appears to consist of a  cardoid along 
with a number of wartlike circles glued to it. 

Its  border  is  complicated  and  this  complexity  can  be 

explored by zooming in on a portion of the border and computing a close 
up view. Each point in the figure is shaded or colored according to the 

outcome of an experiment run on an IFS.
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The Mandelbrot set 
 

 
 

The Iterated function systems for Julia and Mandelbrot sets 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The IFS uses the simple function 
f(z) = z2 + c          -------------------------------(1) 

where c is some constant. The system produces each output by squaring 

its input and adding c. We assume that the process begins with the 
starting value s, so the system generates the sequence of values or orbit 

d1= (s)2 + c 
d2= ((s)2 + c)2 + c 

d3= (((s)2 + c)2 + c)2 + c 
d4= ((((s)2 + c)2 + c)2 + c)2 + c    ------------------------------(2) 

The orbit depends on two ingredients 

the starting point s 

the given value of c 
Given two values of s and c how do points dk along the orbit 

behaves as k gets larger and larger? Specifically, does the orbit remain 
finite or explode. Orbits that remain finite lie in their corresponding Julia 
or Mandelbrot set, whereas those that explode lie outside the set. 

When s and c are chosen to be complex numbers , complex 
arithmetic is used each time the function is applied. The Mandelbrot and 
Julia sets live in the complex plane – plane of complex numbers.
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The IFS works well with both complex and real numbers. 
Both s and c are complex numbers and at each iteration we square the 

previous result and add c. Squaring a complex number z = x + yi yields 
the new complex number: 

( x + yi)2 = (x2 – y2) + (2xy)i                         ----------------------------------(3) 

having real part equal to x2 – y2 and imaginary part equal to 

2xy. 

Some Notes on the Fixed Points of the System 
It is useful to examine the fixed points of the system 

f(.) =(.)2 + c . The behavior of the orbits depends on these fixed points 

that is those complex numbers z that map into themselves, so that 
z2 + c = z. This gives us the quadratic equation z2 – z + c = 0 and the fixed 
points of the system are the two solutions of this equation, given by

p+, p-  =  
1       1  
2       4 

 

--------------------------------(4)

If an orbit reaches a fixed point, p its gets trapped there 
forever. The fixed point can be characterized as attracting or repelling. 

If an orbit flies close to a fixed point p, the next point along the orbit will 
be forced 

closer to p if p is an attracting fixed point 

farther away from p if p is a repelling a fixed point. 
If an orbit gets close to an attracting fixed point, it is sucked 

into the point. In contrast, a repelling fixed point keeps the orbit away 
from it. 

5.4.2 Defining the Mandelbrot Set 
The Mandelbrot set considers different values of c, always 

using the starting point s =0. For each value of c, the set reports on the 
nature of the orbit of 0, whose first few values are as follows: 
orbit of 0:      0, c, c2+c, (c2+c)2+c, ((c2+c)2+c)2 +c,…….. 

For each complex number c, either the orbit is finite so that 

how far along the orbit one goes, the values remain finite or the orbit 
explodes that is the values get larger without limit. The Mandelbrot set 
denoted by M, contains just those values of c that result in finite orbits: 

The point c is in M if 0 has a finite orbit. 

The point c is not in M if the orbit of 0 explodes. 
Definition: 

The Mandelbrot set M is the set of all complex numbers c 
that produce a finite orbit of 0. 

If c is chosen outside of M, the resulting orbit explodes. If c 
is chosen just beyond the border of M, the orbit usually thrashes around 
the plane and goes to infinity. 

If the value of c is chosen inside M, the orbit can do a variety 
of things. For some c’s it goes immediately to a fixed point or spirals into 
such a point.
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5.4.3 Computing whether Point c is in the Mandelbrot Set 
A routine is needed to determine whether or not a given 

complex number c lies in M. With a starting point of s=0, the routine 

must examine the size of the numbers dk along the orbit.  As k increases

the value of 

in M). 

d k      either explodes( c is not in M) or does not explode( c is

A theorem from complex  analysis states that if  d k exceeds

the value of 2, then the orbit will explode at some point. The number of

iterations d k takes to exceed 2 is called the dwell of the orbit.

But if c lies in M, the orbit has an infinite dwell and we can’t 

know this without it iterating forever. We set an upper limit Num on the 
maximum number of iterations we are willing to wait for.

A typical value is Num = 100. If d k   has not exceeded 2 after

Num iterates, we assume that it will never and we conclude that c is in 
M. The orbits for values of c just outside the boundary of M have a large 

dwell and if their dwell exceeds Num, we wrongly decide that they lie 
inside M. A drawing based on too small   value of Num will show a 
Mandelbrot set that is slightly  too large. 
dwell() routine 

int dwell (double cx, double cy) 

{ // return true dwell or Num, whichever is smaller 
#define Num 100           // increase this for better pictures 

double tmp, dx=cx, dy=cy, fsq=cx *cx + cy * cy; 
for(int count=0; count<=Num && fsq <=4; count++) 
{ 

tmp = dx;                                       //save old real part 
dx = dx * dx – dy * dy +cx;              //new real part 
dy = 2.0 * tmp * dy + cy;                 //new imaginary part 

fsq = dx * dx + dy * dy; 
} 

return count;                  // number of iterations used 
} 

For a given value of c = cx  + cyi, the routine returns the

number of iterations required for d k to exceed 2.

At each iteration, the current dk  resides in the pair (dx,dy) 
which is squared using eq(3)  and then added to (cx,cy) to form the next

d value. The value d k   
2 is kept in fsq and compared with 4. The dwell()

function plays a key role in drawing the Mandelbrot set. 

 
5.4.4 Drawing the Mandelbrot Set 

To display M on a raster graphics device. To do this we set 
up a correspondence between each pixel on the display and a value of c,
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and the dwell for that c value is found. A color is assigned to the pixel, 
depending on whether the dwell is finite or has reached its limit. 

The simplest picture of the Mandelbrot set just assign black 

to points inside M and white to those outside.   But pictures are more 
appealing to the eye if a range of color is associated with points outside 
M. Such points all have dwells less than the maximum and we assign 

different colors to them on the basis of dwell size. 
Assigning colors according to the orbit’s dwell 

 

 
 
 
 
 
 
 
 
 
 
 
 

The figure shows how color is assigned to a point having 
dwell d. For very small values of d only a dim blue component is used. As 
d approaches Num the red and green components are increased up to a 

maximum unity. This could be implemented in OpenGL using: 
float v = d / (float)Num; 
glColor3f(v * v, v*, v, 0.2);  // red & green at level v-squared 

We need to see how to associate a pixel with a specific complex value of 
c. A simple approach is suggested in the following figure. 

Establishing a window on M and a correspondence between points 
and pixels. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The user specifies how large the desired image is to be on 
the screen that is 

the number of rows, rows 

the number of columns, cols
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This specification determines the aspect ratio of the image 
:R= cols/rows. The user also chooses a portion of the complex plane 

to be displayed: a rectangular region having the same aspect ratio as 

the image. To do this the user specifies the region’s upper left hand 
corner P and its width W. The rectangle’s height is set by the required 
aspect ratio. The image is displayed in the upper left corner of the 

display. 
To what complex value c= cx  + cyi, does the center of the i, 

jth pixel correspond? Combining we get
 

 
cij =    Px

 

i    
1               

j    
1 

2 W , P           2 W 

 

 
------------------------(5)

cols cols

 

for i = 0,…….,cols-1 and j=0,…..,rows-1. 
The chosen region of the Mandelbrot set is drawn pixel by 

pixel. For each pixel the corresponding value of c is passed to dwell(), 

and the appropriate color associated with the dwell is found. The pixel 
is then set to this color. 

Pseudocode for drawing a region of the Mandelbrot set 
for(j=0; j<rows; j++) 

for(i=0; i<cols; i++) 
{ 

find the corresponding c value in equation (5) 
estimate the dwell of the orbit 
find Color determined by estimated dwell 

setPixel( j , k, Color); 
} 

A practical problem is to study close up views of the 
Mandelbrot set, numbers must be stored and manipulated with great 

precision. 
Also when working close to the boundary of the set , you 

should use a larger value of Num. The calculation times for each 
image will increase as you zoom in on a region of the boundary of M. 

But images of modest size can easily be created on a microcomputer 
in a reasonable amount of time. 

 
5.5 JULIA SETS 

Like   the   Mandelbrot   set,   Julia   sets   are   extremely 

complicated sets of points in the complex plane. There is a different Julia 

set, denoted Jc for each value of c. A closely related variation is the filled- 

in Julia set, denoted by Kc, which is easier to define. 
5.5.1 The Filled-In Julia Set Kc 

In the IFS we set c to some fixed chosen value and examine 
what happens for different starting point s. We ask how the orbit of
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starting point s behaves. Either it explodes or it doesn’t. If it is finite , we 
say the starting point s is in Kc, otherwise s lies outside of Kc. 
Definition: 

The filled-in Julia set at c, Kc, is the set of all starting points 
whose orbits are finite. 

When studying Kc, one chooses a single value for c and 
considers  different  starting  points.  Kc   should  be  always  symmetrical 
about the origin, since the orbits of s and –s become identical after one 
iteration. 
5.5.2 Drawing Filled-in Julia Sets 

A starting point s is in Kc, depending on whether its orbit is 
finite or explodes, the process of drawing a filled-in Julia set is almost 

similar to Mandelbrot set. We choose a window in the complex plane and 
associate pixels with points in the window. The pixels correspond to 
different values of the starting point s. A single value of c is chosen and 

then the orbit for each pixel position is examined to see if it explodes and 
if so, how quickly does it explodes. 

Pseudocode for drawing a region of the Filled-in Julia set 
for(j=0; j<rows; j++) 

for(i=0; i<cols; i++) 
{ 

find the corresponding s value in equation (5) 
estimate the dwell of the orbit 
find Color determined by estimated dwell 
setPixel( j , k, Color); 

} 

The dwell() must be passed to the starting point s as well as 

c. Making a high-resolution image of a Kc requires a great deal of 
computer  time,  since  a  complex  calculation is associated  with every 
pixel. 
5.5.3 Notes on Fixed Points and Basins of Attraction 

If an orbit starts close enough to an attracting fixed point, it 

is sucked into that point. If it starts too far away, it explodes. The set of 
points that are sucked in forms a so called basin of attraction for the 

fixed point p. The set is the filled-in Julia set Kc. The fixed point which 
lies inside the circle |z|= ½ is the attracting point. 

All  points  inside  Kc,  have  orbits  that  explode.  All  points 

inside Kc, have orbits that spiral or plunge into the attracting fixed point. 

If the starting point is inside Kc, then all of the points on the orbit must 

also be inside Kc and they produce a finite orbit. The repelling fixed point 

is on the boundary of Kc. 
Kc for Two Simple Cases 

The set Kc is simple for two values of c: 
1.  c=0: Starting at any point s, the orbit is simply s, s2,s4,…….,s2k,…, 

so the orbit spirals into 0 if |s|<1 and explodes if |s|>1. Thus K0 

is the set of all complex numbers lying inside the unit circle, the
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circle of radius 1 centered at the origin. 
2.  c = -2: in this case it turns out that the filled-in Julia set consists 

of  all points lying on the real axis between -2 and 2. 
For all other values of c, the set Kc, is complex. It has been 

shown that each Kc is one of the two types: 
Kc is connected or 

Kc is a Cantor set 
A theoretical result is that Kc is connected for precisely those 

values of c that lie in the Mandelbrot set. 
5.5.4 The Julia Set Jc 

Julia Set Jc is for any given value of c; it is the boundary of 

Kc. Kc  is the set of all starting points that have finite orbits and every 

point outside Kc has an exploding orbit. We say that the points just along 

the boundary of Kc  and “on the fence”. Inside the boundary all orbits 
remain finite; just outside it, all orbits goes to infinity. 
Preimages and Fixed Points 

If the process started instead at f(s), the image of s, then the 
two orbits would be: 

s, f(s), f2(s), f3(s),….                    (orbit of s) 

or 
f(s), f2(s), f3(s), f4(s),….                (orbit of f(s)) 
which have the same value forever. If the orbit of  s is finite, 

then so is the orbit of its image f(s). All of the points in the orbit , if 
considered as starting points on their own, have orbits with thew same 
behavior: They all are finite or they all explode. 

Any starting point whose orbit passes through s has the 
same behavior as the orbit that start at s: The two orbits are identical 

forever. The point “just before” s in the sequence is called the preimage 
of s and is the inverse of the function f(.) = (.)2 + c.  The inverse of f(.) is 

z      , so we have 

two preimages of z are given by      z          ------------------(6) 

To  check  that  equation  (6)  is correct, note that if either 

preimage is passed through (.)2 + c, the result is z. The test is illustrated 
in figure(a) where the orbit of s is shown in black dots and the two 

preimages of s are marked. The two orbits of these preimages “join up” 
with that of s. 

Each  of  these  preimages  has two preimages and each if 
these has two, so there is a huge collection of orbits that join up with the 

orbit of s, and thereafter committed to the same path. The tree of 
preimages of s is illustrated in fig(B): s has two parent preimages, 4 
grandparents, etc. Going back k generations we find that there are 2k 

preimages.
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Orbits that coincide at s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The Julia set Jc can be characterized in many ways that are 

more precise than simply saying it is the “boundary of” Kc. One such 

characterization  that  suggests  an  algorithm  for  drawing  Jc   is  the 
following: 
The collection of all preimages of any point in Jc is dense in Jc. 

Starting with any point z in Jc, we simply compute its two 
parent preimages, their four grandparent preimages, their eight great- 
grandparent ones, etc. So we draw a dot at each such preimage, and the 
display fills in with a picture of the Julia set. To say that these dots are 

dense in Jc means that for every point in Jc, there is some preimage that 
is close by. 

Drawing the Julia set Jc 

To draw Jc we need to find a point and place a dot at all of 
the point’s preimages. Therea re two problems with this method: 

1.    finding a point in Jc 

2.    keeping track of all the preimages 
An  approach  known  as    the  backward-iteration  method 

overcomes these obstacles and produces good result. The idea is simple: 
Choose some point z in the complex plane. The point may or may not be 

in Jc. Now iterate in backward direction: at each iteration choose one of 
the two square roots randomly, to produce a new z value. The following 

pseudocode is illustrative: 
do { 

if ( coin flip is heads z=      z      ); 

else z =      z       ; 

draw dot at z; 

} while (not bored); 

The idea is that for any reasonable starting point iterating 

backwards a few times will produce a z that is in Jc. It is as if the 
backward orbit is sucked into the Julia set. Once it is in the Julia set, all
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subsequent iterations are there, so point after point builds up inside Jc, 

and a picture emerges. 

 
5.6 RANDOM FRACTALS 

Fractal is the term associated with randomly generated 

curves and surfaces that exhibit a degree of self-similarity. These curves 
are used to provide “naturalistic” shapes for representing objects such as 
coastlines, rugged mountains, grass and fire. 
5.6.1 Fractalizing a Segment 

The  simplest  random  fractal  is  formed  by  recursively 

roughening  or  fractalizing  a  line  segment.  At  each  step,  each  line 
segment is replaced with a “random elbow”. 

The figure shows this process applied to the line segment S 

having endpoints A and B. S is replaced by the two segments from A to C 
and from C to B. For a fractal curve, point C is randomly chosen along 

the perpendicular bisector L of S. The elbow lies randomly on one or the 
other side of the “parent” segment AB. 

Fractalizing with a random elbow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Steps in the fractalization process 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Three stages are required in the fractalization of a segment. 

In the first stage, the midpoint of AB is perturbed to form point C. In the 
second stage , each of the two segment has its midpoints perturbed to
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form points D and E. In the third and final stage, the new points F…..I 
are added. 

To perform fractalization in a program 
Line L passes through the midpoint M of segment S and is 

perpendicular to it. Any point C along L has the parametric form: 
C(t) = M + (B-A)    t        -----------------------------------(7) 

for some values of t, where the midpoint M= (A+B)/2. 

The distance of C from M is |B-A||t|, which is proportional 
to both t and the length of S. So to produce a point C on the random 

elbow, we let t be computed randomly. If t is positive, the elbow lies to 
one side of AB; if t is negative it lies to the other side. 

For most fractal curves, t is modeled as a Gaussian random 

variable with a zero mean and some standard deviation. Using a mean of 
zero causes, with equal probability, the elbow to lie above or below the 
parent segment. 

Fractalizing a Line segment 
void fract(Point2 A, Point2 B, double stdDev) 

// generate a fractal curve from A to B 

double xDiff = A.x – B.x, yDiff= A.y –B.y; 
Point2 C; 
if(xDiff * XDiff + YDiff * yDiff < minLenSq) 

cvs.lintTo(B.x, B.y);
else 
{ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

} 

 
 
 

stdDev *=factor;                               //scale stdDev by factor 

double t=0; 
// make a gaussian variate t lying between 0 and 12.0 
for(int i=0; I, 12; i++) 

t+= rand()/32768.0; 
t= (t-6) * stdDev;                     //shift the mean to 0 and sc 
C.x = 0.5 *(A.x +B.x) – t * (B.y – A.y); 

C.y = 0.5 *(A.y +B.y) – t * (B.x – A.x); 
fract(A, C, stdDev); 

fract(C, B, stdDev); 

 
The routine fract() generates curves that approximate actual

fractals. The routine recursively replaces each segment in a random 
elbow with a smaller random elbow. The stopping criteria used is: When 
the length of the segment is small enough, the segment is drawn using 

cvs.lineTo(), where cvs is a Canvas object. The variable t is made to be 
approximately Gaussian in its distribution by summing together 12 

uniformly distributed random values lying between 0 and 1. The result 
has a mean value of 6 and a variance of 1. The mean value is then 
shifted to 0 and the variance is scaled as necessary. 

The depth of recursion in fract() is controlled by the length of 
the line segment.
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5.6.2 Controlling the Spectral Density of the Fractal Curve 
The fractal curve generated using the above code has a 

“power spectral density” given by 

 
S(f)= 1/f β 

 
Where β the power of the noise process is the parameter the 

user can set to control the jaggedness of the fractal noise. When β is 2, 
the process is known as Brownian motion and when β is 1, the process is 
called “1/f noise”. 1/f noise is self similar and is shown to be a good 

model for physical process such as clouds. The fractal dimension of such 
processes is: 

 

D 
2 

In the routine fract(), the scaling factor factor by which the 
standard deviation is scaled at each level based on the exponent β of the 

fractal curve. Values larger than 2 leads to smoother curves and values 
smaller than 2 leads to more jagged curves. The value of factor is given 

by: 
factor = 2 (1 – β/2 ) 

The factor decreases as β increases. 

Drawing a fractal curve(pseudocode) 

double MinLenSq, factor;                 //global variables 
void drawFractal (Point2 A, Point2 B) 
{ 

double beta, StdDev; 

User inputs beta, MinLenSq and the the initial StdDev 
factor = pow(2.0, (1.0 – beta)/ 2.0); 
cvs.moveTo(A); 

fract(A, B, StdDev); 
} 
In this routine factor is computed using the C++ library 

function pow(…). 
One of the features of fractal curves generated by 

pseudorandom –number generation is that they are repeatable. All that is 
required is to use the same seed each time the curve is fractalized. A 
complicated shape can be fractalized and can be stored in the database 

by storing only 

the polypoint that describes the original line segments 

the values of minLenSq and stdDev and 

the seed. 

An extract replica of the fractalized curve can be regenerated 
at any time using these informations.
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5.7   INTERSECTING RAYS WITH OTHER PRIMITIVES 
First the ray is transformed into the generic coordinates of the object and then the 

various intersection with the generic object are computed. 

1) Intersecting with a Square 
The generic square lies in the z=0 plane and extends from -1 to 1 in both x and y. 
The square can be transformed into any parallelogram positioned in space, so it is 

often used in scenes to provide this, flat surfaces such as walls and windows. The 
function hit(1) first finds where the ray hits the generic plane and then test whether this 
hit spot also lies within the square. 

2) Intersecting with a Tapered Cylinder 
The side of the cylinder is part of an infinitely long wall with a radius of L at 

z=0,and a small radius of S at z=1.This wall has the implicit form as 

F(x, y, z)=x
2 

+ y
2
- (1 + (S - 1) z)

2
, for 0 < z < 1 

If S=1, the shape becomes the generic cylinder, if S=0 , it becomes the generic 

cone. We develop a hit () method for the tapered cylinder, which also provides hit() 

method for the cylinder and cone. 

3) Intersecting with a Cube (or any Convex Polyhedron) 
The convex polyhedron, the generic cube deserves special attention. It is centered 

at the origin and has corner at (±1, ±1, ±1) using all right combinations of +1 and - 

1.Thus,its edges are aligned with coordinates axes, and its six faces lie in the plan. 

The generic cube is important for two reasons. 

   A large variety of intersecting boxes can be modeled and placed in a scene by 

applying an affine transformation to a generic cube. Then, in ray tracing each ray 

can be inverse transformed into the generic cube’s coordinate system and we can 

use a ray with generic cube intersection routine. 

   The generic cube can be used as an extent for the other generic primitives in the 

sense of a bounding box. Each generic primitives, such as the cylinder, fits snugly 

inside the cube. 
 

4) Adding More Primitives 
To find where the  ray S + ct intersects the surface, we substitute S + ct for P in 

F(P) (the explicit form of the shape) 

d(t) = f(S + ct) 

 
This function is 

positive at these values of t for which the ray is outside the object. 

zero when the ray coincides with the surface of the object and 

negative when the ray is inside the surface. 
 

The generic torus has the implicit function as 
2        2             2          2F(P) = (    Px  +Py 

So the resulting equation d(t)=0 is quartic. 
) - d) + Pz   - 1
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For quadrics such as the sphere, d(t) has a parabolic shape, for the torus, it has a 

quartic shape. For other surfaces d(t) may be so complicated that we have to search 

numerically to locate t’s for which d(.) equals zero. The function for super ellipsoid is 
d(t) = ((Sx + Cxt)

n 
+(Sy + Cyt)

n
)
m/n 

+ (Sy + Cyt)
m 

-1 
where n and m are constant that govern the shape of the surface. 

5.8   ADDING SURFACE TEXTURE 
A fast method for approximating global illumination effect is environmental 

mapping. An environment array is used to store background intensity information for a 

scene. This array is then mapped to the objects in a scene based on the specified viewing 

direction. This is called as environment mapping or reflection mapping. 

To render the surface of an object, we project pixel areas on to surface and then reflect 

the projected pixel area on to the environment map to pick up the surface shading 

attributes for each pixel. If the object is transparent, we can also refract the projected 

pixel are also the environment map. The environment mapping process for reflection of a 

projected pixel area is shown in figure.  Pixel intensity is determined by averaging the 

intensity values within the intersected region of the environment map. 

A simple method for adding surface detail is the model structure and patterns with 

polygon facets. For large scale detail, polygon modeling can give good results. Also we 

could model an irregular surface with small, randomly oriented polygon facets, provided 

the facets were not too small. 

Surface pattern polygons are generally overlaid on a larger surface polygon and are 

processed with the parent’s surface. Only the parent polygon is processed by the visible 

surface algorithms, but the illumination parameters for the surfac3e detail polygons take 

precedence over the parent polygon. When fine surface detail is to be modeled, polygon 

are not practical. 

 
5.8.1 Texture Mapping 

A method for adding surface detail is to map texture patterns onto the surfaces of 
objects.  The texture pattern may either be defined in a rectangular array or as a 

procedure that modifies surface intensity values.  This approach is referred to as texture 

mapping or pattern mapping. 

The texture pattern is defined with a rectangular grid of intensity values in a 

texture space referenced with (s,t) coordinate values. Surface positions in the scene are 

referenced with UV object space coordinates and pixel positions on the projection plane 

are referenced in xy Cartesian coordinates. 
Texture mapping can be accomplished in one of two ways.  Either we can map the 

texture pattern to object surfaces, then to the projection plane, or we can map pixel areas 
onto object surfaces then to texture space.  Mapping a texture pattern to pixel coordinates 
is sometime called texture scanning, while the mapping from pixel coordinates to texture 
space is referred to as pixel order scanning or inverse scanning or image order 
scanning. 

To simplify calculations, the mapping from texture space to object space is often 
specified with parametric linear functions 

U=fu(s,t)=au s+ but + cu 

V=fv(s,t)=av s+ bvt + cv
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The object to image space mapping is accomplished with the concatenation of the 

viewing and projection transformations. 

A disadvantage of mapping from texture space to pixel space is that a selected 

texture patch usually does not match up with the pixel boundaries, thus requiring 

calculation of the fractional area of pixel coverage.  Therefore, mapping from pixel space 

to texture space is the most commonly used texture mapping method.  This avoids pixel 

subdivision calculations, and allows anti aliasing procedures to be easily applied. 
The mapping from image space to texture space does require calculation of the 

inverse viewing projection transformation mVP 
-1 

and the inverse texture map 
transformation mT 

-1 
. 

5.8.2 Procedural Texturing Methods 
Next method for adding surface texture is to use procedural definitions of the 

color variations that are to be applied to the objects in a scene.  This approach avoids the 

transformation calculations involved transferring two dimensional texture patterns to 

object surfaces. 

When values are assigned throughout a region of three dimensional space, the 

object color variations are referred to as solid textures.  Values from texture space are 

transferred to object surfaces using procedural methods, since it is usually impossible to 

store texture values for all points throughout a region of space (e.g) Wood Grains or 

Marble patterns Bump Mapping. 

Although texture mapping can be used to add fine surface detail, it is not a good 

method for modeling the surface roughness that appears on objects such as oranges, 

strawberries and raisins.  The illumination detail in the texture pattern usually does not 

correspond to the illumination direction in the scene. 
A better method for creating surfaces bumpiness is to apply a perturbation function to 
the surface normal and then use the perturbed normal in the illumination model 
calculations.  This technique is called bump mapping. 
If P(u,v) represents a position on a parameter surface, we can obtain the surface normal at 
that point with the calculation 

N = Pu × Pv 

Where Pu and Pv  are the partial derivatives of P with respect to parameters u and v. 
To obtain a perturbed normal, we modify the surface position vector by adding a small 
perturbation function called a bump function. 

P’(u,v) = P(u,v) + b(u,v) n. 

This adds bumps to the surface in the direction of the unit surface normal n=N/|N|. The 

perturbed surface normal is then obtained as 

N'=Pu' + Pv' 

We calculate the partial derivative with respect to u of the perturbed position vector as 
Pu' = _∂_(P + bn) 

∂u 
= Pu + bu n + bnu 

Assuming the bump function b is small, we can neglect the last term and write 
p u' ≈ pu + bun 

Similarly p v'= p v + b v n. 
and the perturbed surface normal is 

N' = Pu + Pv + b v (Pu x n ) + bu ( n x Pv ) + bu bv (n x n).
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But n x n =0, so that 

N' = N + bv ( Pu x n) + bu ( n x Pv) 

The final step is to normalize N' for use in the illumination model calculations. 

5.8.3  Frame Mapping 
Extension of bump mapping is frame mapping. 

In frame mapping, we perturb both the surface normal N and a local coordinate 

system attached to N. The local coordinates are defined with a surface tangent 

vector T and a binormal vector B x T x N. 

Frame mapping is used to model anisotrophic surfaces. We orient T along the 

grain of the surface and apply directional perturbations in addition to bump perturbations 

in the direction of N. In this way, we can model wood grain patterns, cross thread 
patterns in cloth and streaks in marble or similar materials. Both bump and directional 
perturbations can be obtained with table look-ups. 

To incorporate texturing into a ray tracer, two principal kinds of textures are used. 

With image textures, 2D image is pasted onto each surface of the object. 

With solid texture, the object is considered to be carved out of a block of 

some material that itself has texturing. The ray tracer reveals the color of 

the texture at each point on the surface of the object. 
 

5.8.4 Solid Texture 
Solid texture is sometimes called as 3D texture. We view an object as being 

carved out of some texture material such as marble or wood. A texture is represented by a 

function texture (x, y, z) that produces an (r, g, h) color value at every point in space. 

Think of this texture as a color or inkiness that varies with position, if u look at different 

points (x, y, z) you see different colors. When an object of some shape is defined in this 

space, and all the material outside the shape is chipped away to reveal the object’s surface 

the point (x, y, z) on the surface is revealed and has the specified texture. 

5.8.5 Wood grain texture 
The grain in a log of wood is due to concentric cylinders of varying color, 

corresponding to the rings seen when a log is cut. As the distance of the points from some 

axis varies, the function jumps back and forth between two values. This effect can be 

simulated with the modulo function. 

Rings(r) = ( (int) r)%2 

where for rings about z-axis, the radius r = √x
2
+y

2 
.The value of the function rings () 

jumps between zero and unity as r increases from zero. 

 
5.8.6  3D Noise and Marble Texture 

The grain in materials such as marble is quite chaotic. Turbulent riverlets of dark 
material course through the stone with random whirls and blotches as if the stone was 

formed out of some violently stirred molten material. We can simulate turbulence by 

building a noise function that produces an apparently random value at each point (x,y,z) 

in space. This noise field is the stirred up in a well-controlled way to give appearance of 

turbulence. 

5.8.7 Turbulence
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A method for generating more interesting noise. The idea is to mix together 

several noise components: One that fluctuates slowly as you move slightly through space, 

one that fluctuates twice as rapidly, one that fluctuates four times rapidly, etc. The more 

rapidly varying components are given progressively smaller strengths 

turb (s, x, y, z)  =   1/2noise(s ,x, y, z) + 1/4noise(2s,x,y,z) +1/8 noise (4s,x,y,z). 

The function adds three such components, each behalf as strong and varying twice 

as rapidly as its predecessor. 

Common term of a turb () is a 
 

turb (s, x, y, z) = 1/2  1/2
K
noise(2

k
s, x, y, z). 

5.8.8 Marble Texture 
Marble shows veins of dark and light material that have some regularity ,but that 

also exhibit strongly chaotic irregularities. We can build up a marble like 3D texture by 

giving the veins a smoothly fluctuating behavior in the z-direction and then perturbing it 

chantically using turb(). We start with a texture that is constant in x and y and smoothly 

varying in z. 

Marble(x,y,z)=undulate(sin(2)). 

Here undulate() is the spline shaped function that varies between some dark and 

some light value as its argument varies from -1 to 1. 

5.9 REFLECTIONS AND TRANSPERENCY 
The great strengths of the ray tracing method is the ease with which it can handle 

both reflection and refraction of light. This allows one to build scenes of exquisite 

realism, containing mirrors, fishbowls, lenses and the like. There can be multiple 

reflections in which light bounces off several shiny surfaces before reaching the eye or 

elaborate combinations of refraction and reflection. Each of these processes requires the 

spawnins and tracing of additional rays. 
The figure 5.15 shows a ray emanating, from the eye in the direction dir and 

hitting a surface at the point Ph. when the surface is mirror like or transparent, the light I 
that reaches the eye may have 5 components 

I=Iamb + Idiff + Ispec   + Irefl + Itran 

The first three are the fan=miler ambient, diffuse and specular contributions. The 
diffuse and specular part arise from light sources in the environment that are visible at Pn. 

Iraft is the reflected light component ,arising from the light , Ik that is incident at Pn along 

the direction –r. This direction is such that the angles of incidence and reflection are 
equal,so 

R=dir-2(dir.m)m 

Where we assume that the normal vector m at Ph has been normalized. 
Similarly Itran is the transmitted light components arising from the light IT that is 

transmitted thorough the transparent material to Ph along the direction –t. A portion of 
this light passes through the surface and in so doing is bent, continuing its travel along – 

dir. The refraction direction + depends on several factors. 

I is a sum of various light contributions, IR and IT each arise from their own fine 

components – ambient, diffuse and so on. IR is the light that would be seen by an eye at 

Ph along a ray from P’ to Pn. To determine IR, we do in fact spawn a secondary ray from 

Pn in the direction r, find the first object it hits and then repeat the same computation of



CS2401 COMPUTER GRAPHICS UNIT V 

25 

 

 

sin(θ2) = sin(θ1) 

C2  C1 

 

 
 

light component. Similarly IT is found by casting a ray in the direction t and seeing what 

surface is hit first, then computing the light contributions. 

5.9.1 The Refraction of Light 
When a ray of light strikes a transparent object, apportion of the ray penetrates the 

object. The ray will change direction from dir to + if the speed of light is different in 
medium 1 than in medium 2. If the angle of incidence of the ray is θ1, Snell’s law states 
that the angle of refraction will be 

 

 
 

where C1 is the spped of light in medium 1 and C2 is the speed of light in medium 
2. Only the ratio C2/C1 is important. It is often called the index of refraction of medium 2 
with respect to medium 1. Note that if θ1 ,equals zero so does θ2 .Light hitting an 
interface at right angles is not bent. 

In ray traving scenes that include transparent objects, we must keep track of the 
medium through which a ray is passing so that we can determine the value C2/C1 at the 
next intersection where the ray either exists from the current object or enters another one. 
This tracking is most easily accomplished by adding a field to the ray that holds a pointer 
to the object within which the ray is travelling. 

Several design polices are used, 
1)  Design Policy 1: No two transparent object may interpenetrate. 

2)  Design Policy 2: Transparent object may interpenetrate. 
 

 

5.10 COMPOUND OBJECTS: BOOLEAN OPERATIONS ON 

OBJECTS 
 

 

A  ray tracing method to combine simple shapes to more complex ones is known 

as constructive Solid Geometry(CSG). Arbitrarily complex shapes are defined by set 

operations on simpler shapes in a CSG. Objects such as lenses and hollow fish bowls, as 

well as objects with holes are easily formed by combining the generic shapes. Such 

objects are called compound, Boolean or CSG objects. 

The Boolean operators: union, intersection and difference are shown in the figure 

5.17. 
 

 

Two compound objects build from spheres. The intersection of two spheres is 

shown as a lens shape. That is a point in the lens if and only if it is in both spheres. L is 

the intersection of the S1 and  S2 is written as 

L=S1∩S2 

The difference operation is shown as a bowl.A point is in the difference of sets A 

and B, denoted A-B,if it is in A and not in B.Applying the difference operation is 

analogous to removing material to cutting or carrying.The bowl is specified by 

B=(S1-S2)-C.
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The solid globe, S1 is hollowed out by removing all the points of the inner sphere, 

S2,forming a hollow spherical shell. The top is then opened by removing all points in the 

cone C. 

A point is in the union of two sets A and B, denoted  AUB, if it is in A or in B or 

in both. Forming the union of two objects is analogous to gluing them together. 

The union of two cones and two cylinders is shown as a rocket. 

R=C1 U C2 U C3 U C4. 

Cone C1 resets on cylinder C2.Cone C3 is partially embedded in C2 and resets on 

the fatter cylinder C4. 
 

 

5.10.1 Ray Tracing CSC objects 
 

 

Ray trace objects that are Boolean combinations of simpler objects. The ray inside 

lens L from t3 to t2 and the hit time is t3.If the lens is opaque, the  familiar shading rules 

will be applied to find what color the lens is at the hit spot. If the lens is mirror like or 

transparent spawned rays are generated with the proper directions and are traced as 

shown in figure 5.18. 

Ray,first strikes the bowl at t1,the smallest of the times for which it is in S1 but not 

in either S2 or C. Ray 2 on the other hand,first hits the bowl at t5. Again this is the 

smallest time for which the ray is in S1,but in neither the other sphere nor the cone.The 

hits at earlier times are hits with components parts of the bowl,but not with the bowl 

itself. 
 

 

5.10.2  Data Structure for Boolean objects 

Since a compound object is always the combination of two other objects say obj1 

OP Obj2, or binary tree structure provides a natural description. 
 

 

5.10.3 Intersecting Rays with Boolean Objects 

We need to be develop a hit() method to work each type of Boolean object.The 

method must form inside set for the ray with the left subtree,the inside set for the ray with 

the right subtree,and then combine the two sets appropriately. 
 

 

bool Intersection Bool::hit(ray in Intersection & inter) 

{ 

Intersection lftinter,rtinter; 

if (ray misses the extends)return false; 

if (C) left −>hit(r,lftinter)||((right−>hit(r,rtinter))) 

return false; 

return (inter.numHits > 0); 

}
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Extent tests are first made to see if there is an early out.Then the proper hit() 

routing is called for the left subtree and unless the ray misses this subtree,the hit list rinter 

is formed.If there is a miss,hit() returns the value false immediately because the ray must 

hit dot subtrees in order to hit their intersection.Then the hit list rtInter is formed. 
 

 

The code is similar for the union Bool and DifferenceBool classes. For 

UnionBool::hit(),the two hits are formed using 

if((!left-)hit(r,lftInter))**(|right-)hit(r,rtinter))) 

return false; 
 

which provides an early out only if both hit lists are empty. 

For differenceBool::hit(),we use the code 

if((!left−>hit(r,lftInter)) return false; 

if(!right−>hit(r,rtInter)) 

{ 

inter=lftInter; 

return true; 

} 

which gives an early out if the ray misses the left subtree,since it must then miss the 

whole object. 

5.10.4 Building and using Extents for CSG object 
The creation of projection,sphere and box extend for CSG object. During a 

preprocessing step,the true for the CSG object is scanned and extents are built for each 

node and stored within the node itself. During raytracing,the ray can be tested against 

each extent encounted,with the potential benefit of an early out in the intersection process 

if it becomes clear that the ray cannot hit the object.
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