
 1

UNIT I - 2D PRIMITIVES

Output primitives – Line, Circle and Ellipse drawing algorithms - Attributes of

output primitives – Two dimensional Geometric transformation - Two dimensional

viewing – Line, Polygon, Curve and Text clipping algorithms

Introduction

A picture is completely specified by the set of intensities for the pixel positions in the

display. Shapes and colors of the objects can be described internally with pixel arrays

into the frame buffer or with the set of the basic geometric – structure such as straight

line segments and polygon color areas. To describe structure of basic object is referred to

as output primitives.

Each output primitive is specified with input co-ordinate data and other information about

the way that objects is to be displayed. Additional output primitives that can be used to

constant a picture include circles and other conic sections, quadric surfaces, Spline curves

and surfaces, polygon floor areas and character string.

Points and Lines

Point plotting is accomplished by converting a single coordinate position furnished by

an application program into appropriate operations for the output device. With a CRT

monitor, for example, the electron beam is turned on to illuminate the screen phosphor at

the selected location

Line drawing is accomplished by calculating intermediate positions along the line path

between two specified end points positions. An output device is then directed to fill in

these positions between the end points

Digital devices display a straight line segment by plotting discrete points between the two

end points. Discrete coordinate positions along the line path are calculated from the

equation of the line. For a raster video display, the line color (intensity) is then loaded

into the frame buffer at the corresponding pixel coordinates. Reading from the frame

buffer, the video controller then plots “the screen pixels”.

Pixel positions are referenced according to scan-line number and column number (pixel

position across a scan line). Scan lines are numbered consecutively from 0, starting at the

bottom of the screen; and pixel columns are numbered from 0, left to right across each

scan line

 2

Figure : Pixel Postions reference by scan line number and column number

To load an intensity value into the frame buffer at a position corresponding to column x

along scan line y,

setpixel (x, y)

To retrieve the current frame buffer intensity setting for a specified location we use a low

level function

getpixel (x, y)

Line Drawing Algorithms

 Digital Differential Analyzer (DDA) Algorithm

 Bresenham’s Line Algorithm

 Parallel Line Algorithm

The Cartesian slope-intercept equation for a straight line is

 y = m . x + b (1)

Where m as slope of the line and b as the y intercept

Given that the two endpoints of a line segment are specified at positions (x1,y1) and

(x2,y2) as in figure we can determine the values for the slope m and y intercept b with the

following calculations

 3

Figure : Line Path between endpoint positions (x1,y1) and (x2,y2)

m = ∆y / ∆x = y2-y1 / x2 - x1 (2)

b= y1 - m . x1 (3)

For any given x interval ∆x along a line, we can compute the corresponding y interval

∆ y

∆y= m ∆x (4)

We can obtain the x interval ∆x corresponding to a specified ∆y as

∆ x = ∆ y/m (5)

For lines with slope magnitudes |m| < 1, ∆x can be set proportional to a small

horizontal deflection voltage and the corresponding vertical deflection is then set

proportional to ∆y as calculated from Eq (4).

For lines whose slopes have magnitudes |m | >1 , ∆y can be set proportional to a small

vertical deflection voltage with the corresponding horizontal deflection voltage set

proportional to ∆x, calculated from Eq (5)

 For lines with m = 1, ∆x = ∆y and the horizontal and vertical deflections voltage

are equal.

Figure : Straight line Segment with five sampling positions along the x axis between x1 and x2

 4

Digital Differential Analyzer (DDA) Algortihm

The digital differential analyzer (DDA) is a scan-conversion line algorithm based on

calculation either ∆y or ∆x

The line at unit intervals in one coordinate and determine corresponding integer values

nearest the line path for the other coordinate.

A line with positive slop, if the slope is less than or equal to 1, at unit x intervals (∆x=1)

and compute each successive y values as

yk+1 = yk + m (6)

Subscript k takes integer values starting from 1 for the first point and increases by 1 until

the final endpoint is reached. m can be any real number between 0 and 1 and, the

calculated y values must be rounded to the nearest integer

For lines with a positive slope greater than 1 we reverse the roles of x and y, (∆y=1) and

calculate each succeeding x value as

 xk+1 = xk + (1/m) (7)

Equation (6) and (7) are based on the assumption that lines are to be processed from the

left endpoint to the right endpoint.

If this processing is reversed, ∆x=-1 that the starting endpoint is at the right

yk+1 = yk – m (8)

When the slope is greater than 1 and ∆y = -1 with

 xk+1 = xk-1(1/m) (9)

If the absolute value of the slope is less than 1 and the start endpoint is at the left, we set

∆x = 1 and calculate y values with Eq. (6)

When the start endpoint is at the right (for the same slope), we set ∆x = -1 and obtain y

positions from Eq. (8). Similarly, when the absolute value of a negative slope is greater

than 1, we use ∆y = -1 and Eq. (9) or we use ∆y = 1 and Eq. (7).

 5

Algorithm

#define ROUND(a) ((int)(a+0.5))

void lineDDA (int xa, int ya, int xb, int yb)

{

int dx = xb - xa, dy = yb - ya, steps, k;

float xIncrement, yIncrement, x = xa, y = ya;

if (abs (dx) > abs (dy) steps = abs (dx) ;

else steps = abs dy);

xIncrement = dx / (float) steps;

yIncrement = dy / (float) steps

setpixel (ROUND(x), ROUND(y)) :

for (k=0; k<steps; k++)

{

x += xIncrement;

y += yIncrement;

setpixel (ROUND(x), ROUND(y));

}

}

Algorithm Description:

Step 1 : Accept Input as two endpoint pixel positions

Step 2: Horizontal and vertical differences between the endpoint positions are assigned to

parameters dx and dy (Calculate dx=xb-xa and dy=yb-ya).

Step 3: The difference with the greater magnitude determines the value of parameter

steps.

Step 4 : Starting with pixel position (xa, ya), determine the offset needed at each step to

generate the next pixel position along the line path.

Step 5: loop the following process for steps number of times

a. Use a unit of increment or decrement in the x and y direction

b. if xa is less than xb the values of increment in the x and y directions are 1 and m

c. if xa is greater than xb then the decrements -1 and – m are used.

Example : Consider the line from (0,0) to (4,6)

1. xa=0, ya =0 and xb=4 yb=6

2. dx=xb-xa = 4-0 = 4 and dy=yb-ya=6-0= 6

3. x=0 and y=0

4. 4 > 6 (false) so, steps=6

5. Calculate xIncrement = dx/steps = 4 / 6 = 0.66 and yIncrement = dy/steps =6/6=1

6. Setpixel(x,y) = Setpixel(0,0) (Starting Pixel Position)

 6

7. Iterate the calculation for xIncrement and yIncrement for steps(6) number of times

8. Tabulation of the each iteration

Result :

Advantages of DDA Algorithm

1. It is the simplest algorithm

2. It is a is a faster method for calculating pixel positions

Disadvantages of DDA Algorithm

1. Floating point arithmetic in DDA algorithm is still time-consuming

2. End point accuracy is poor

Bresenham’s Line Algorithm

An accurate and efficient raster line generating algorithm developed by Bresenham, that

uses only incremental integer calculations.

k x Y
Plotting points

(Rounded to Integer)

0 0+0.66=0.66 0+1=1 (1,1)

1 0.66+0.66=1.32 1+1=2 (1,2)

2 1.32+0.66=1.98 2+1=3 (2,3)

3 1.98+0.66=2.64 3+1=4 (3,4)

4 2.64+0.66=3.3 4+1=5 (3,5)

5 3.3+0.66=3.96 5+1=6 (4,6)

 7

In addition, Bresenham’s line algorithm can be adapted to display circles and other

curves.

To illustrate Bresenham's approach, we- first consider the scan-conversion process for

lines with positive slope less than 1.

Pixel positions along a line path are then determined by sampling at unit x intervals.

Starting from the left endpoint (x0,y0) of a given line, we step to each successive column

(x position) and plot the pixel whose scan-line y value is closest to the line path.

To determine the pixel (xk,yk) is to be displayed, next to decide which pixel to plot the

column xk+1=xk+1.(xk+1,yk) and .(xk+1,yk+1). At sampling position xk+1, we label vertical

pixel separations from the mathematical line path as d1 and d2. The y coordinate on the

mathematical line at pixel column position xk+1 is calculated as

 y =m(xk+1)+b (1)

Then

 d1 = y-yk

 = m(xk+1)+b-yk

 d2 = (yk+1)-y

 = yk+1-m(xk+1)-b

To determine which of the two pixel is closest to the line path, efficient test that is based

on the difference between the two pixel separations

 d1- d2 = 2m(xk+1)-2yk+2b-1 (2)

A decision parameter Pk for the k
th

 step in the line algorithm can be obtained by

rearranging equation (2). By substituting m=∆y/∆x where ∆x and ∆y are the vertical and

horizontal separations of the endpoint positions and defining the decision parameter as

pk = ∆x (d1- d2)

 = 2∆y xk.-2∆x. yk + c (3)

The sign of pk is the same as the sign of d1- d2,since ∆x>0

Parameter C is constant and has the value 2∆y + ∆x(2b-1) which is independent of the

pixel position and will be eliminated in the recursive calculations for Pk.

If the pixel at yk is “closer” to the line path than the pixel at yk+1 (d1< d2) than decision

parameter Pk is negative. In this case, plot the lower pixel, otherwise plot the upper pixel.

Coordinate changes along the line occur in unit steps in either the x or y directions.

 8

To obtain the values of successive decision parameters using incremental integer

calculations. At steps k+1, the decision parameter is evaluated from equation (3) as

Pk+1 = 2∆y xk+1-2∆x. yk+1 +c

Subtracting the equation (3) from the preceding equation

 Pk+1 - Pk = 2∆y (xk+1 - xk) -2∆x(yk+1 - yk)

But xk+1= xk+1 so that

 Pk+1 = Pk+ 2∆y-2∆x(yk+1 - yk) (4)

Where the term yk+1-yk is either 0 or 1 depending on the sign of parameter Pk

This recursive calculation of decision parameter is performed at each integer x position,

starting at the left coordinate endpoint of the line.

 The first parameter P0 is evaluated from equation at the starting pixel position

(x0,y0) and with m evaluated as ∆y/∆x

P0 = 2∆y-∆x (5)

Bresenham’s line drawing for a line with a positive slope less than 1 in the following

outline of the algorithm.

 The constants 2∆y and 2∆y-2∆x are calculated once for each line to be scan

converted.

Bresenham’s line Drawing Algorithm for |m| < 1

1. Input the two line endpoints and store the left end point in (x0,y0)

2. load (x0,y0) into frame buffer, ie. Plot the first point.

3. Calculate the constants ∆x, ∆y, 2∆y and obtain the starting value for the decision

parameter as P0 = 2∆y-∆x

4. At each xk along the line, starting at k=0 perform the following test

 If Pk < 0, the next point to plot is(xk+1,yk) and

 Pk+1 = Pk + 2∆y

 otherwise, the next point to plot is (xk+1,yk+1) and

 Pk+1 = Pk + 2∆y - 2∆x

5. Perform step4 ∆x times.

 9

Implementation of Bresenham Line drawing Algorithm

void lineBres (int xa,int ya,int xb, int yb)

{

int dx = abs(xa – xb) , dy = abs (ya - yb);

int p = 2 * dy – dx;

int twoDy = 2 * dy, twoDyDx = 2 *(dy - dx);

int x , y, xEnd;

/* Determine which point to use as start, which as end * /

if (xa > x b)

{

x = xb;

y = yb;

xEnd = xa;

}

 else

{

x = xa;

y = ya;

xEnd = xb;

}

setPixel(x,y);

while(x<xEnd)

{

x++;

if (p<0)

p+=twoDy;

else

{

y++;

p+=twoDyDx;

}

setPixel(x,y);

}

}

Example : Consider the line with endpoints (20,10) to (30,18)

The line has the slope m= (18-10)/(30-20)=8/10=0.8

 10

∆x = 10 ∆y=8

The initial decision parameter has the value

p0 = 2Δy- Δx = 6

and the increments for calculating successive decision parameters are

2Δy=16 2Δy-2 Δx= -4

We plot the initial point (x0,y0) = (20,10) and determine successive pixel positions along

the line path from the decision parameter as

Tabulation

k pk (xk+1, yK+1)

0 6 (21,11)

1 2 (22,12)

2 -2 (23,12)

3 14 (24,13)

4 10 (25,14)

5 6 (26,15)

6 2 (27,16)

7 -2 (28,16)

8 14 (29,17)

9 10 (30,18)

Result

 11

Advantages

 Algorithm is Fast

 Uses only integer calculations

Disadvantages

It is meant only for basic line drawing.

Line Function

The two dimension line function is Polyline(n,wcPoints) where n is assigned an integer

value equal to the number of coordinate positions to be input and wcPoints is the array of

input world-coordinate values for line segment endpoints.

polyline function is used to define a set of n – 1 connected straight line segments

To display a single straight-line segment we have to set n=2 and list the x and y values of

the two endpoint coordinates in wcPoints.

Example : following statements generate 2 connected line segments with endpoints at

(50, 100), (150, 250), and (250, 100)

typedef struct myPt{int x, y;};

myPt wcPoints[3];

wcPoints[0] .x = 50; wcPoints[0] .y = 100;

wcPoints[1] .x = 150; wcPoints[1].y = 50;

wcPoints[2].x = 250; wcPoints[2] .y = 100;

polyline (3 , wcpoints);

Circle-Generating Algorithms

General function is available in a graphics library for displaying various kinds of curves,

including circles and ellipses.

Properties of a circle

A circle is defined as a set of points that are all the given distance (xc,yc).

 12

This distance relationship is expressed by the pythagorean theorem in Cartesian

coordinates as

 (x – xc)
2
 + (y – yc)

2
 = r

2
(1)

Use above equation to calculate the position of points on a circle circumference by

stepping along the x axis in unit steps from xc-r to xc+r and calculating the corresponding

y values at each position as

 y = yc +(-) (r
2
 – (xc –x)

2
)
1/2

(2)

This is not the best method for generating a circle for the following reason

Considerable amount of computation

Spacing between plotted pixels is not uniform

To eliminate the unequal spacing is to calculate points along the circle boundary using

polar coordinates r and θ. Expressing the circle equation in parametric polar from yields

the pair of equations

 x = xc + rcos θ y = yc + rsin θ

When a display is generated with these equations using a fixed angular step size, a circle

is plotted with equally spaced points along the circumference. To reduce calculations use

a large angular separation between points along the circumference and connect the points

with straight line segments to approximate the circular path.

 Set the angular step size at 1/r. This plots pixel positions that are approximately

one unit apart. The shape of the circle is similar in each quadrant. To determine the curve

positions in the first quadrant, to generate he circle section in the second quadrant of the

xy plane by nothing that the two circle sections are symmetric with respect to the y axis

 13

and circle section in the third and fourth quadrants can be obtained from sections in the

first and second quadrants by considering symmetry between octants.

Circle sections in adjacent octants within one quadrant are symmetric with respect to the

45
0
 line dividing the two octants. Where a point at position (x, y) on a one-eight circle

sector is mapped into the seven circle points in the other octants of the xy plane.

To generate all pixel positions around a circle by calculating only the points within the

sector from x=0 to y=0. the slope of the curve in this octant has an magnitude less than of

equal to 1.0. at x=0, the circle slope is 0 and at x=y, the slope is -1.0.

Bresenham’s line algorithm for raster displays is adapted to circle generation by setting

up decision parameters for finding the closest pixel to the circumference at each sampling

step. Square root evaluations would be required to computer pixel siatances from a

circular path.

 Bresenham’s circle algorithm avoids these square root calculations by comparing

the squares of the pixel separation distances. It is possible to perform a direct distance

comparison without a squaring operation.

 In this approach is to test the halfway position between two pixels to determine if

this midpoint is inside or outside the circle boundary. This method is more easily applied

to other conics and for an integer circle radius the midpoint approach generates the same

pixel positions as the Bresenham circle algorithm.

For a straight line segment the midpoint method is equivalent to the bresenham line

algorithm. The error involved in locating pixel positions along any conic section using

the midpoint test is limited to one half the pixel separations.

 14

Midpoint circle Algorithm:

 In the raster line algorithm at unit intervals and determine the closest pixel

position to the specified circle path at each step for a given radius r and screen center

position (xc,yc) set up our algorithm to calculate pixel positions around a circle path

centered at the coordinate position by adding xc to x and yc to y.

 To apply the midpoint method we define a circle function as

 fcircle(x,y) = x
2
+y

2
-r

2

Any point (x,y) on the boundary of the circle with radius r satisfies the equation fcircle

(x,y)=0. If the point is in the interior of the circle, the circle function is negative. And if

the point is outside the circle the, circle function is positive

 fcircle (x,y) <0, if (x,y) is inside the circle boundary

 =0, if (x,y) is on the circle boundary

 >0, if (x,y) is outside the circle boundary

The tests in the above eqn are performed for the midposition sbteween pixels near the

circle path at each sampling step. The circle function is the decision parameter in the

midpoint algorithm.

 Midpoint between candidate pixels at sampling position xk+1 along a circular path.

Fig -1 shows the midpoint between the two candidate pixels at sampling position xk+1. To

plot the pixel at (xk,yk) next need to determine whether the pixel at position (xk+1,yk) or

the one at position (xk+1,yk-1) is circular to the circle.

 Our decision parameter is the circle function evaluated at the midpoint between

these two pixels

 Pk= fcircle (xk+1,yk-1/2)

 =(xk+1)
2
+(yk-1/2)

2
-r

2

If Pk <0, this midpoint is inside the circle and the pixel on scan line yk is closer to the

circle boundary. Otherwise the mid position is outside or on the circle boundary and

select the pixel on scan line yk -1.

 Successive decision parameters are obtained using incremental calculations. To

obtain a recursive expression for the next decision parameter by evaluating the circle

function at sampling position xk+1+1= xk+2

 Pk= fcircle (xk+1+1,yk+1-1/2)

 =[(xk+1)+1]
2
+(yk+1-1/2)

2
-r

2

 or

 Pk+1=Pk+2(xk+1)+(y
2

k+1-y
2

k

)-(yk+1-yk)+1

Where yk+1 is either yk or yk-1 depending on the sign of Pk .

 15

Increments for obtaining Pk+1 are either 2xk+1+1 (if Pk is negative) or

2xk+1+1-2 yk+1.

 Evaluation of the terms 2xk+1 and 2 yk+1 can also be done incrementally as

 2xk+1=2xk+2

 2 yk+1=2 yk-2

At the Start position (0,r) these two terms have the values 0 and 2r respectively. Each

successive value for the 2xk+1 term is obtained by adding 2 to the previous value and each

successive value for the 2yk+1 term is obtained by subtracting 2 from the previous value.

 The initial decision parameter is obtained by evaluating the circle function at the

start position (x0,y0)=(0,r)

 P0= fcircle (1,r-1/2)

 =1+(r-1/2)
2
-r

2

or

 P0=(5/4)-r

 If the radius r is specified as an integer

 P0=1-r(for r an integer)

Midpoint circle Algorithm

1. Input radius r and circle center (xc,yc) and obtain the first point on the circumference

of the circle centered on the origin as

 (x0,y0) = (0,r)

2. Calculate the initial value of the decision parameter as P0=(5/4)-r

3. At each xk position, starting at k=0, perform the following test. If Pk <0 the next point

along the circle centered on (0,0) is (xk+1,yk) and Pk+1=Pk+2xk+1+1

Otherwise the next point along the circle is (xk+1,yk-1) and Pk+1=Pk+2xk+1+1-2 yk+1

 Where 2xk+1=2xk+2 and 2yk+1=2yk-2

4. Determine symmetry points in the other seven octants.

5. Move each calculated pixel position (x,y) onto the circular path centered at (xc,yc) and

plot the coordinate values.

 x=x+xc y=y+yc

6. Repeat step 3 through 5 until x>=y.

 16

Example : Midpoint Circle Drawing

Given a circle radius r=10

The circle octant in the first quadrant from x=0 to x=y. The initial value of the decision

parameter is P0=1-r = - 9

For the circle centered on the coordinate origin, the initial point is (x0,y0)=(0,10) and

initial increment terms for calculating the decision parameters are

 2x0=0 , 2y0=20

 Successive midpoint decision parameter values and the corresponding coordinate

positions along the circle path are listed in the following table.

k pk (xk+1, yk-1) 2xk+1 2yk+1

0 -9 (1,10) 2 20

1 -6 (2,10) 4 20

2 -1 (3,10) 6 20

3 6 (4,9) 8 18

4 -3 (5,9) 10 18

5 8 (6,8) 12 16

6 5 (7,7) 14 14

 17

Implementation of Midpoint Circle Algorithm

void circleMidpoint (int xCenter, int yCenter, int radius)

{

int x = 0;

int y = radius;

int p = 1 - radius;

void circlePlotPoints (int, int, int, int);

/* Plot first set of points */

circlePlotPoints (xCenter, yCenter, x, y);

while (x < y)

{

x++ ;

if (p < 0)

p +=2*x +1;

else

{

y--;

p +=2* (x - Y) + 1;

}

circlePlotPoints(xCenter, yCenter, x, y)

}

}

void circlePlotPolnts (int xCenter, int yCenter, int x, int y)

{

setpixel (xCenter + x, yCenter + y) ;

setpixel (xCenter - x. yCenter + y);

setpixel (xCenter + x, yCenter - y);

setpixel (xCenter - x, yCenter - y) ;

setpixel (xCenter + y, yCenter + x);

setpixel (xCenter - y , yCenter + x);

setpixel (xCenter t y , yCenter - x);

setpixel (xCenter - y , yCenter - x);

}

Ellipse-Generating Algorithms

An ellipse is an elongated circle. Therefore, elliptical curves can be generated by

modifying circle-drawing procedures to take into account the different dimensions of an

ellipse along the major and minor axes.

 18

Properties of ellipses

An ellipse can be given in terms of the distances from any point on the ellipse to two

fixed positions called the foci of the ellipse. The sum of these two distances is the same

values for all points on the ellipse.

 If the distances to the two focus positions from any point p=(x,y) on the ellipse are

labeled d1 and d2, then the general equation of an ellipse can be stated as

 d1+d2=constant

 Expressing distances d1 and d2 in terms of the focal coordinates F1=(x1,y2) and

F2=(x2,y2)

 sqrt((x-x1)
2
+(y-y1)

2
)+sqrt((x-x2)

2
+(y-y2)

2
)=constant

 By squaring this equation isolating the remaining radical and squaring again. The

general ellipse equation in the form

 Ax
2
+By

2
+Cxy+Dx+Ey+F=0

The coefficients A,B,C,D,E, and F are evaluated in terms of the focal coordinates and the

dimensions of the major and minor axes of the ellipse.

 The major axis is the straight line segment extending from one side of the ellipse

to the other through the foci. The minor axis spans the shorter dimension of the ellipse,

perpendicularly bisecting the major axis at the halfway position (ellipse center) between

the two foci.

 An interactive method for specifying an ellipse in an arbitrary orientation is to

input the two foci and a point on the ellipse boundary.

 Ellipse equations are simplified if the major and minor axes are oriented to align

with the coordinate axes. The major and minor axes oriented parallel to the x and y axes

parameter rx for this example labels the semi major axis and parameter ry labels the semi

minor axis

 19

 ((x-xc)/rx)
2
+((y-yc)/ry)

2
=1

 Using polar coordinates r and θ, to describe the ellipse in Standard position with

the parametric equations

 x=xc+rxcos θ

 y=yc+rxsin θ

Angle θ called the eccentric angle of the ellipse is measured around the perimeter of a

bounding circle.

We must calculate pixel positions along the elliptical arc throughout one quadrant, and

then we obtain positions in the remaining three quadrants by symmetry

Midpoint ellipse Algorithm

 The midpoint ellipse method is applied throughout the first quadrant in two parts.

The below figure show the division of the first quadrant according to the slope of an

ellipse with rx<ry.

 20

In the x direction where the slope of the curve has a magnitude less than 1 and unit steps

in the y direction where the slope has a magnitude greater than 1.

Region 1 and 2 can be processed in various ways

 1. Start at position (0,ry) and step clockwise along the elliptical path in the first

quadrant shifting from unit steps in x to unit steps in y when the slope becomes less than

-1

 2. Start at (rx,0) and select points in a counter clockwise order.

 2.1 Shifting from unit steps in y to unit steps in x when the slope becomes

greater than -1.0

 2.2 Using parallel processors calculate pixel positions in the two regions

simultaneously

 3. Start at (0,ry)

 step along the ellipse path in clockwise order throughout the first quadrant

ellipse function (xc,yc)=(0,0)

 fellipse (x,y)=ry
2
x

2
+rx

2
y

2
 –rx

2
 ry

2

which has the following properties:

 fellipse (x,y) <0, if (x,y) is inside the ellipse boundary

 =0, if(x,y) is on ellipse boundary

 >0, if(x,y) is outside the ellipse boundary

 Thus, the ellipse function fellipse (x,y) serves as the decision parameter in the

midpoint algorithm.

Starting at (0,ry):

 Unit steps in the x direction until to reach the boundary between region 1 and

region 2. Then switch to unit steps in the y direction over the remainder of the curve in

the first quadrant.

 21

 At each step to test the value of the slope of the curve. The ellipse slope is

calculated

 dy/dx= -(2ry
2
x/2rx

2
y)

At the boundary between region 1 and region 2

 dy/dx = -1.0 and 2ry
2
x=2rx

2
y

to more out of region 1 whenever

 2ry
2
x>=2rx

2
y

The following figure shows the midpoint between two candidate pixels at sampling

position xk+1 in the first region.

To determine the next position along the ellipse path by evaluating the decision

parameter at this mid point

 P1k = fellipse (xk+1,yk-1/2)

 = ry
2
 (xk+1)

2
 + rx

2
 (yk-1/2)

2
 – rx

2
 ry

2

 if P1k <0, the midpoint is inside the ellipse and the pixel on scan line yk is

closer to the ellipse boundary. Otherwise the midpoint is outside or on the ellipse

boundary and select the pixel on scan line yk-1

 At the next sampling position (xk+1+1=xk+2) the decision parameter for region 1 is

calculated as

 22

p1k+1 = fellipse(xk+1 +1,yk+1 -½)

 =ry
2
[(xk +1) + 1]

2
 + rx

2
 (yk+1 -½)

2
 - rx

2
 ry

2

 Or

p1k+1 = p1k +2 ry
2
(xk +1) + ry

2
 + rx

2
 [(yk+1 -½)

2
 - (yk -½)

2
]

Where yk+1 is yk or yk-1 depending on the sign of P1k.

Decision parameters are incremented by the following amounts

increment = { 2 ry
2
(xk +1) + ry

2
 if p1k <0 }

 { 2 ry
2
(xk +1) + ry

2
 - 2rx

2
 yk+1 if p1k ≥ 0 }

Increments for the decision parameters can be calculated using only addition and

subtraction as in the circle algorithm.

 The terms 2ry
2
 x and 2rx

2
 y can be obtained incrementally. At the initial position

(0,ry) these two terms evaluate to

 2 ry
2
x = 0

 2rx
2
 y =2rx

2
 ry

 x and y are incremented updated values are obtained by adding 2ry
2
to the current

value of the increment term and subtracting 2rx
2

from the current value of the increment

term. The updated increment values are compared at each step and more from region 1 to

region 2. when the condition 4 is satisfied.

 In region 1 the initial value of the decision parameter is obtained by evaluating the

ellipse function at the start position

 (x0,y0) = (0,ry)

region 2 at unit intervals in the negative y direction and the midpoint is now taken

between horizontal pixels at each step for this region the decision parameter is evaluated

as

p10 = fellipse(1,ry -½)

 = ry
2

+ rx
2
 (ry -½)

2
 - rx

2
 ry

2

 23

 Or

 p10 = ry
2
 - rx

2
 ry

 + ¼ rx

2

over region 2, we sample at unit steps in the negative y direction and the midpoint is now

taken between horizontal pixels at each step. For this region, the decision parameter is

evaluated as

 p2k = fellipse(xk +½ ,yk - 1)

 = ry
2

(xk +½)
2
 + rx

2
 (yk - 1)

2
 - rx

2
 ry

2

 1. If P2k >0, the mid point position is outside the ellipse boundary, and select the

pixel at xk.

 2. If P2k <=0, the mid point is inside the ellipse boundary and select pixel position

xk+1.

 To determine the relationship between successive decision parameters in region 2

evaluate the ellipse function at the sampling step : yk+1 -1= yk-2.

 P2k+1 = fellipse(xk+1 +½,yk+1 -1)

 =ry
2
(xk +½)

2
 + rx

2
 [(yk+1 -1) -1]

2
 - rx

2
 ry

2

 or

p2k+1 = p2k -2 rx
2
(yk -1) + rx

2
 + ry

2
 [(xk+1 +½)

2
 - (xk +½)

2
]

With xk+1set either to xkor xk+1, depending on the sign of P2k. when we enter

region 2, the initial position (x0,y0) is taken as the last position. Selected in region 1 and

the initial decision parameter in region 2 is then

p20 = fellipse(x0 +½ ,y0 - 1)

 = ry
2

(x0 +½)
2
 + rx

2
 (y0 - 1)

2
 - rx

2
 ry

2

To simplify the calculation of P20, select pixel positions in counter clock wise

order starting at (rx,0). Unit steps would then be taken in the positive y direction up to the

last position selected in region 1.

Mid point Ellipse Algorithm

1. Input rx,ry and ellipse center (xc,yc) and obtain the first point on an ellipse

centered on the origin as

 24

 (x0,y0) = (0,ry)

2. Calculate the initial value of the decision parameter in region 1 as

 P10=ry
2
-rx

2
ry +(1/4)rx

2

3. At each xk position in region1 starting at k=0 perform the following test. If

P1k<0, the next point along the ellipse centered on (0,0) is (xk+1, yk) and

 p1k+1 = p1k +2 ry
2
xk +1 + ry

2

 Otherwise the next point along the ellipse is (xk+1, yk-1) and

 p1k+1 = p1k +2 ry
2
xk +1 - 2rx

2
 yk+1 + ry

2

 with

 2 ry
2
xk +1 = 2 ry

2
xk + 2ry

2

 2 rx
2
yk +1 = 2 rx

2
yk + 2rx

2

 And continue until 2ry
2
 x>=2rx

2
 y

4. Calculate the initial value of the decision parameter in region 2 using the last

point (x0,y0) is the last position calculated in region 1.

 p20 = ry
2
(x0+1/2)

2
+rx

2
(yo-1)

2
 – rx

2
ry

2

5. At each position yk in region 2, starting at k=0 perform the following test, If

p2k>0 the next point along the ellipse centered on (0,0) is (xk,yk-1) and

 p2k+1 = p2k – 2rx
2
yk+1+rx

2

Otherwise the next point along the ellipse is (xk+1,yk-1) and

 p2k+1 = p2k + 2ry
2
xk+1 – 2rxx

2
yk+1 + rx

2

Using the same incremental calculations for x any y as in region 1.

6. Determine symmetry points in the other three quadrants.

7. Move each calculate pixel position (x,y) onto the elliptical path centered on

(xc,yc) and plot the coordinate values

 x=x+xc, y=y+yc

8. Repeat the steps for region1 unit 2ry
2
x>=2rx

2
y

 25

Example : Mid point ellipse drawing

 Input ellipse parameters rx=8 and ry=6 the mid point ellipse algorithm by

determining raster position along the ellipse path is the first quadrant. Initial

values and increments for the decision parameter calculations are

 2ry
2
 x=0 (with increment 2ry

2
=72)

 2rx
2
 y=2rx

2
 ry (with increment -2rx

2
= -128)

For region 1 the initial point for the ellipse centered on the origin is (x0,y0) =

(0,6) and the initial decision parameter value is

p10=ry
2
-rx

2
ry

2
+1/4rx

2
=-332

Successive midpoint decision parameter values and the pixel positions along the

ellipse are listed in the following table.

k p1k xk+1,yk+1 2ry
2
xk+1 2rx

2
yk+1

0 -332 (1,6) 72 768

1 -224 (2,6) 144 768

2 -44 (3,6) 216 768

3 208 (4,5) 288 640

4 -108 (5,5) 360 640

5 288 (6,4) 432 512

6 244 (7,3) 504 384

Move out of region 1, 2ry2x >2rx
2
y .

For a region 2 the initial point is (x0,y0)=(7,3) and the initial decision parameter

is

 p20 = fellipse(7+1/2,2) = -151

The remaining positions along the ellipse path in the first quadrant are then

calculated as

k P2k xk+1,yk+1 2ry
2
xk+1 2rx

2
yk+1

0 -151 (8,2) 576 256

1 233 (8,1) 576 128

2 745 (8,0) - -

 26

Implementation of Midpoint Ellipse drawing

#define Round(a) ((int)(a+0.5))

void ellipseMidpoint (int xCenter, int yCenter, int Rx, int Ry)

{

int Rx2=Rx*Rx;

int Ry2=Ry*Ry;

int twoRx2 = 2*Rx2;

int twoRy2 = 2*Ry2;

int p;

int x = 0;

int y = Ry;

int px = 0;

int py = twoRx2* y;

void ellipsePlotPoints (int , int , int , int) ;

/* Plot the first set of points */

ellipsePlotPoints (xcenter, yCenter, x,y) ;

/ * Region 1 */

p = ROUND(Ry2 - (Rx2* Ry) + (0.25*Rx2));

while (px < py)

{

x++;

px += twoRy2;

i f (p < 0)

p += Ry2 + px;

else

{

y - - ;

py -= twoRx2;

p += Ry2 + px - py;

}

ellipsePlotPoints(xCenter, yCenter,x,y);

}

/* Region 2 */

p = ROUND (Ry2*(x+0.5)*' (x+0.5)+ Rx2*(y- l)* (y- l) - Rx2*Ry2);

while (y > 0)

{

y--;

py -= twoRx2;

i f (p > 0)

p += Rx2 - py;

else

 27

{

x++;

px+=twoRy2;

p+=Rx2-py+px;

}

ellipsePlotPoints(xCenter, yCenter,x,y);

}

}

void ellipsePlotPoints(int xCenter, int yCenter,int x,int y);

{

setpixel (xCenter + x, yCenter + y);

setpixel (xCenter - x, yCenter + y);

setpixel (xCenter + x, yCenter - y);

setpixel (xCenter- x, yCenter - y);

}

Attributes of output primitives

Any parameter that affects the way a primitive is to be displayed is referred to as an

attribute parameter. Example attribute parameters are color, size etc. A line drawing

function for example could contain parameter to set color, width and other properties.

1. Line Attributes

2. Curve Attributes

3. Color and Grayscale Levels

4. Area Fill Attributes

5. Character Attributes

6. Bundled Attributes

 28

Line Attributes

Basic attributes of a straight line segment are its type, its width, and its color. In some

graphics packages, lines can also be displayed using selected pen or brush options

 Line Type

 Line Width

 Pen and Brush Options

 Line Color

Line type

Possible selection of line type attribute includes solid lines, dashed lines and dotted lines.

To set line type attributes in a PHIGS application program, a user invokes the function

setLinetype (lt)

Where parameter lt is assigned a positive integer value of 1, 2, 3 or 4 to generate lines

that are solid, dashed, dash dotted respectively. Other values for line type parameter it

could be used to display variations in dot-dash patterns.

Line width

Implementation of line width option depends on the capabilities of the output device to

set the line width attributes.

 setLinewidthScaleFactor(lw)

Line width parameter lw is assigned a positive number to indicate the relative width of

line to be displayed. A value of 1 specifies a standard width line. A user could set lw to a

value of 0.5 to plot a line whose width is half that of the standard line. Values greater

than 1 produce lines thicker than the standard.

Line Cap

We can adjust the shape of the line ends to give them a better appearance by adding line

caps.

There are three types of line cap. They are

 Butt cap

 Round cap

 Projecting square cap

 29

Butt cap obtained by adjusting the end positions of the component parallel lines so that

the thick line is displayed with square ends that are perpendicular to the line path.

Round cap obtained by adding a filled semicircle to each butt cap. The circular arcs are

centered on the line endpoints and have a diameter equal to the line thickness

 Projecting square cap extend the line and add butt caps that are positioned one-half of

the line width beyond the specified endpoints.

Three possible methods for smoothly joining two line segments

 Mitter Join

 Round Join

 Bevel Join

1. A miter join accomplished by extending the outer boundaries of each of the two lines

until they meet.

2. A round join is produced by capping the connection between the two segments with a

circular boundary whose diameter is equal to the width.

3. A bevel join is generated by displaying the line segment with but caps and filling in tri

angular gap where the segments meet

 30

Pen and Brush Options

With some packages, lines can be displayed with pen or brush selections. Options in this

category include shape, size, and pattern. Some possible pen or brush shapes are given in

Figure

Line color

A poly line routine displays a line in the current color by setting this color value in the

frame buffer at pixel locations along the line path using the set pixel procedure.

We set the line color value in PHlGS with the function

setPolylineColourIndex (lc)

Nonnegative integer values, corresponding to allowed color choices, are assigned to the

line color parameter lc

Example : Various line attribute commands in an applications program is given by the

following sequence of statements

 31

setLinetype(2);

setLinewidthScaleFactor(2);

setPolylineColourIndex (5);

polyline(n1,wc points1);

setPolylineColorIindex(6);

poly line (n2, wc points2);

This program segment would display two figures, drawn with double-wide dashed lines.

The first is displayed in a color corresponding to code 5, and the second in color 6.

Curve attributes

Parameters for curve attribute are same as those for line segments. Curves displayed with

varying colors, widths, dot –dash patterns and available pen or brush options

Color and Grayscale Levels

Various color and intensity-level options can be made available to a user, depending on

the capabilities and design objectives of a particular system

In a color raster system, the number of color choices available depends on the amount of

storage provided per pixel in the frame buffer

Color-information can be stored in the frame buffer in two ways:

 We can store color codes directly in the frame buffer

 We can put the color codes in a separate table and use pixel values as an index into

this table

With the direct storage scheme, whenever a particular color code is specified in an

application program, the corresponding binary value is placed in the frame buffer for

each-component pixel in the output primitives to be displayed in that color.

A minimum number of colors can be provided in this scheme with 3 bits of storage per

pixel, as shown in Table

 32

Color tables(Color Lookup Tables) are an alternate means for providing extended color

capabilities to a user without requiring large frame buffers

3 bits - 8 choice of color

6 bits – 64 choice of color

8 bits – 256 choice of color

A user can set color-table entries in a PHIGS applications program with the function

setColourRepresentation (ws, ci, colorptr)

 33

Parameter ws identifies the workstation output device; parameter ci specifies the color

index, which is the color-table position number (0 to 255) and parameter colorptr points

to a trio of RGB color values (r, g, b) each specified in the range from 0 to 1

Grayscale

With monitors that have no color capability, color functions can be used in an application

program to set the shades of gray, or grayscale, for displayed primitives. Numeric values

over the range from 0 to 1 can be used to specify grayscale levels, which are then

converted to appropriate binary codes for storage in the raster.

Intensity = 0.5[min(r,g,b)+max(r,g,b)]

Area fill Attributes

 Options for filling a defined region include a choice between a solid color or a

pattern fill and choices for particular colors and patterns

Fill Styles

Areas are displayed with three basic fill styles: hollow with a color border, filled with a

solid color, or filled with a specified pattern or design. A basic fill style is selected in a

PHIGS program with the function

setInteriorStyle(fs)

Values for the fill-style parameter fs include hollow, solid, and pattern. Another value for

fill style is hatch, which is used to fill an area with selected hatching patterns-parallel

lines or crossed lines

 34

The color for a solid interior or for a hollow area outline is chosen with where fill color

parameter fc is set to the desired color code

setInteriorColourIndex(fc)

Pattern Fill

We select fill patterns with setInteriorStyleIndex (pi) where pattern index parameter pi

specifies a table position

For example, the following set of statements would fill the area defined in the fillArea

command with the second pattern type stored in the pattern table:

SetInteriorStyle(pattern)

SetInteriorStyleIndex(2);

Fill area (n, points)

 35

Character Attributes

The appearance of displayed character is controlled by attributes such as font, size, color

and orientation. Attributes can be set both for entire character strings (text) and for

individual characters defined as marker symbols

Text Attributes

The choice of font or type face is set of characters with a particular design style as

courier, Helvetica, times roman, and various symbol groups.

 The characters in a selected font also be displayed with styles. (solid, dotted,

double) in bold face in italics, and in or sshhaaddooww styles.

A particular font and associated stvle is selected in a PHIGS program by setting an

integer code for the text font parameter tf in the function

setTextFont(tf)

Control of text color (or intensity) is managed from an application program with

setTextColourIndex(tc)

 where text color parameter tc specifies an allowable color code.

Text size can be adjusted without changing the width to height ratio of characters with

SetCharacterHeight (ch)

Parameter ch is assigned a real value greater than 0 to set the coordinate height of capital

letters

The width only of text can be set with function.

 SetCharacterExpansionFactor(cw)

 36

Where the character width parameter cw is set to a positive real value that scales the body

width of character

Spacing between characters is controlled separately with

setCharacterSpacing(cs)

where the character-spacing parameter cs can he assigned any real value

The orientation for a displayed character string is set according to the direction of the

character up vector

setCharacterUpVector(upvect)

Parameter upvect in this function is assigned two values that specify the x and y vector

components. For example, with upvect = (1, 1), the direction of the up vector is 45
o
 and

text would be displayed as shown in Figure.

To arrange character strings vertically or horizontally

 setTextPath (tp)

 37

Where the text path parameter tp can be assigned the value: right, left, up, or down

Another handy attribute for character strings is alignment. This attribute specifies how

text is to be positioned with respect to the $tart coordinates. Alignment attributes are set

with

setTextAlignment (h,v)

where parameters h and v control horizontal and vertical alignment. Horizontal alignment

is set by assigning h a value of left, center, or right. Vertical alignment is set by

assigning v a value of top, cap, half, base or bottom.

A precision specification for text display is given with

 setTextPrecision (tpr)

 tpr is assigned one of values string, char or stroke.

Marker Attributes

A marker symbol is a single character that can he displayed in different colors and in

different sizes. Marker attributes are implemented by procedures that load the chosen

character into the raster at the defined positions with the specified color and size. We

select a particular character to be the marker symbol with

setMarkerType(mt)

where marker type parameter mt is set to an integer code. Typical codes for marker type

are the integers 1 through 5, specifying, respectively, a dot (.) a vertical cross (+), an

asterisk (*), a circle (o), and a diagonal cross (X).

 38

We set the marker size with

setMarkerSizeScaleFactor(ms)

with parameter marker size ms assigned a positive number. This scaling parameter is

applied to the nominal size for the particular marker symbol chosen. Values greater than

1 produce character enlargement; values less than 1 reduce the marker size.

Marker color is specified with

setPolymarkerColourIndex(mc)

A selected color code parameter mc is stored in the current attribute list and used to

display subsequently specified marker primitives

Bundled Attributes

The procedures considered so far each function reference a single attribute that specifies

exactly how a primitive is to be displayed these specifications are called individual

attributes.

A particular set of attributes values for a primitive on each output device is chosen by

specifying appropriate table index. Attributes specified in this manner are called bundled

attributes. The choice between a bundled or an unbundled specification is made by setting

a switch called the aspect source flag for each of these attributes

 setIndividualASF(attributeptr, flagptr)

where parameter attributer ptr points to a list of attributes and parameter flagptr points to

the corresponding list of aspect source flags. Each aspect source flag can be assigned a

value of individual or bundled.

Bundled line attributes

Entries in the bundle table for line attributes on a specified workstation are set with the

function

 setPolylineRepresentation (ws, li, lt, lw, lc)

Parameter ws is the workstation identifier and line index parameter li defines the bundle

table position. Parameter lt, lw, tc are then bundled and assigned values to set the line

type, line width, and line color specifications for designated table index.

 39

Example

setPolylineRepresentation(1,3,2,0.5,1)

 setPolylineRepresentation (4,3,1,1,7)

 A poly line that is assigned a table index value of 3 would be displayed using

dashed lines at half thickness in a blue color on work station 1; while on workstation 4,

this same index generates solid, standard-sized white lines

Bundle area fill Attributes

Table entries for bundled area-fill attributes are set with

 setInteriorRepresentation (ws, fi, fs, pi, fc)

Which defines the attributes list corresponding to fill index fi on workstation ws.

Parameter fs, pi and fc are assigned values for the fill style pattern index and fill color.

Bundled Text Attributes

 setTextRepresentation (ws, ti, tf, tp, te, ts, tc)

bundles values for text font, precision expansion factor size an color in a table position

for work station ws that is specified by value assigned to text index parameter ti.

Bundled marker Attributes

 setPolymarkerRepresentation (ws, mi, mt, ms, mc)

 That defines marker type marker scale factor marker color for index mi on

workstation ws.

Inquiry functions

Current settings for attributes and other parameters as workstations types and status in the

system lists can be retrieved with inquiry functions.

 inquirePolylineIndex (lastli) and

 inquireInteriorcColourIndex (lastfc)

Copy the current values for line index and fill color into parameter lastli and lastfc.

 40

Two Dimensional Geometric Transformations

Changes in orientations, size and shape are accomplished with geometric transformations

that alter the coordinate description of objects.

Basic transformation

 Translation

 T(tx, ty)

 Translation distances

 Scale

 S(sx,sy)

 Scale factors

 Rotation

 R()

 Rotation angle

Translation

 A translation is applied to an object by representing it along a straight line path

from one coordinate location to another adding translation distances, tx, ty to original

coordinate position (x,y) to move the point to a new position (x’,y’) to

 x’ = x + tx, y’ = y + ty

 41

The translation distance point (tx,ty) is called translation vector or shift vector.

Translation equation can be expressed as single matrix equation by using column vectors

to represent the coordinate position and the translation vector as

Moving a polygon from one position to another position with the translation

vector (-5.5, 3.75)

Rotations:

 A two-dimensional rotation is applied to an object by repositioning it along a

circular path on xy plane. To generate a rotation, specify a rotation angle θ and the

position (xr,yr) of the rotation point (pivot point) about which the object is to be rotated.

 Positive values for the rotation angle define counter clock wise rotation about

pivot point. Negative value of angle rotate objects in clock wise direction. The

transformation can also be described as a rotation about a rotation axis perpendicular to

xy plane and passes through pivot point

TPP

t

t

y

x

y

x

tyy

txx

ttT

yxP

y

x

y

x

yx






































'

'

'

'

'

),(

),(

 42

Rotation of a point from position (x,y) to position (x’,y’) through angle θ relative to

coordinate origin

The transformation equations for rotation of a point position P when the pivot point is at

coordinate origin. In figure r is constant distance of the point positions Ф is the original

angular of the point from horizontal and θ is the rotation angle.

The transformed coordinates in terms of angle θ and Ф

 x’ = rcos(θ+Ф) = rcosθ cosФ – rsinθsinФ

 y’ = rsin(θ+Ф) = rsinθ cosФ + rcosθsinФ

The original coordinates of the point in polar coordinates

 x = rcosФ, y = rsinФ

the transformation equation for rotating a point at position (x,y) through an angle θ about

origin

x’ = xcosθ – ysinθ

y’ = xsinθ + ycosθ

Rotation equation

 P’= R . P

Rotation Matrix

R =
   
    





 





cossin

sincos

 43

Note : Positive values for the rotation angle define counterclockwise rotations about the

rotation point and negative values rotate objects in the clockwise.

Scaling

A scaling transformation alters the size of an object. This operation can be carried out for

polygons by multiplying the coordinate values (x,y) to each vertex by scaling factor Sx &

Sy to produce the transformed coordinates (x’,y’)

 x’= x.Sx y’ = y.Sy

scaling factor Sx scales object in x direction while Sy scales in y direction.

The transformation equation in matrix form



























y

x

s

s

y

x

y

x

0

0

'

'

or

 P’ = S. P

Where S is 2 by 2 scaling matrix

Turning a square (a) Into a rectangle (b) with scaling factors sx = 2 and sy= 1.

Any positive numeric values are valid for scaling factors sx and sy. Values less than 1

reduce the size of the objects and values greater than 1 produce an enlarged object.

   
    















 










y

x

y

x





cossin

sincos

'

'

 44

There are two types of Scaling. They are

Uniform scaling

Non Uniform Scaling

To get uniform scaling it is necessary to assign same value for sx and sy. Unequal values

for sx and sy result in a non uniform scaling.

Matrix Representation and homogeneous Coordinates

Many graphics applications involve sequences of geometric transformations. An

animation, for example, might require an object to be translated and rotated at each

increment of the motion. In order to combine sequence of transformations we have to

eliminate the matrix addition. To achieve this we have represent matrix as 3 X 3 instead

of 2 X 2 introducing an additional dummy coordinate h. Here points are specified by

three numbers instead of two. This coordinate system is called as Homogeneous

coordinate system and it allows to express transformation equation as matrix

multiplication

Cartesian coordinate position (x,y) is represented as homogeneous coordinate

triple(x,y,h)

• Represent coordinates as (x,y,h)

• Actual coordinates drawn will be (x/h,y/h)

For Translation

  PttTP

y

x

t

t

y

x

yx

y

x





















































,'

1100

10

01

1

'

'

For Scaling

  PssSP

y

x

s

s

y

x

yx

y

x





















































,'

1100

00

00

1

'

'

 45

For rotation

  PRP

y

x

y

x

































 

























'

1100

0cossin

0sincos

1

'

'

Composite Transformations

 A composite transformation is a sequence of transformations; one followed by the other.

we can set up a matrix for any sequence of transformations as a composite

transformation matrix by calculating the matrix product of the individual

transformations

Translation

If two successive translation vectors (tx1,ty1) and (tx2,ty2) are applied to a coordinate

position P, the final transformed location P’ is calculated as

P’=T(tx2,ty2).{T(tx1,ty1).P}

={T(tx2,ty2).T(tx1,ty1)}.P

Where P and P’ are represented as homogeneous-coordinate column vectors.























































100

2110

2101

100

110

101

.

100

210

201

tyty

txtx

ty

tx

ty

tx

Or

T(tx2,ty2).T(tx1,ty1) = T(tx1+tx2,ty1+ty2)

Which demonstrated the two successive translations are additive.

Rotations

Two successive rotations applied to point P produce the transformed position

P’=R(θ2).{R(θ1).P}={R(θ2).R(θ1)}.P

 46

By multiplying the two rotation matrices, we can verify that two successive rotation are

additive

R(θ2).R(θ1) = R(θ1+ θ2)

So that the final rotated coordinates can be calculated with the composite rotation matrix

as

P’ = R(θ1+ θ2).P





































 















 

100

0)12cos()12sin(

0)12sin()12cos(

100

01cos1sin

01sin1cos

.

100

02cos2sin

02sin2cos













Scaling

Concatenating transformation matrices for two successive scaling operations produces

the following composite scaling matrix



















































100

01.20

001.2

100

010

001

.

100

020

002

sysy

sxsx

sy

sx

sy

sx

General Pivot-point Rotation

1. Translate the object so that pivot-position is moved to the coordinate origin

2. Rotate the object about the coordinate origin

Translate the object so that the pivot point is returned to its original position

 47

The composite transformation matrix for this sequence is obtain with the concatenation

Which can also be expressed as T(xr,yr).R(θ).T(-xr,-yr) = R(xr,yr,θ)

General fixed point scaling

Translate object so that the fixed point coincides with the coordinate origin

Scale the object with respect to the coordinate origin

Use the inverse translation of step 1 to return the object to its original position

 48

Concatenating the matrices for these three operations produces the required scaling matix

Can also be expressed as T(xf,yf).S(sx,sy).T(-xf,-yf) = S(xf, yf, sx, sy)

Note : Transformations can be combined by matrix multiplication

Implementation of composite transformations

#include <math.h>

#include <graphics.h>

typedef float Matrix3x3 [3][3];

Matrix3x3 thematrix;

void matrix3x3SetIdentity (Matrix3x3 m)

{

int i,j;

for (i=0; i<3; i++)

for (j=0: j<3; j++)

m[il[j] = (i == j);

}







































































































w

y

x

sy

sx

ty

tx

w

y

x

100

00

00

100

0cossin

0sincos

100

10

01

'

'

'

 49

/ * Multiplies matrix a times b, putting result in b */

void matrix3x3PreMultiply (Matrix3x3 a. Matrix3x3 b)

{

int r,c:

Matrix3x3 tmp:

for (r = 0; r < 3: r++)

for (c = 0; c < 3; c++)

tmp[r][c] =a[r][0]*b[0][c]+ a[r][1]*b[l][c] + a[r][2]*b[2][c]:

for (r = 0: r < 3: r++)

for Ic = 0; c < 3: c++)

b[r][c]=- tmp[r][c]:

}

void translate2 (int tx, int ty)

{

Matrix3x3 m:

rnatrix3x3SetIdentity (m) :

m[0][2] = tx;

m[1][2] = ty:

matrix3x3PreMultiply (m, theMatrix);

}

vold scale2 (float sx. float sy, wcPt2 refpt)

(

Matrix3x3 m.

matrix3x3SetIdentity (m);

m[0] [0] = sx;

m[0][2] = (1 - sx)* refpt.x;

m[l][l] = sy;

m[10][2] = (1 - sy)* refpt.y;

matrix3x3PreMultiply (m, theMatrix);

}

void rotate2 (float a, wcPt2 refPt)

{

Matrix3x3 m;

matrix3x3SetIdentity (m):

a = pToRadians (a);

m[0][0]= cosf (a);

m[0][1] = -sinf (a) ;

m[0] [2] = refPt.x * (1 - cosf (a)) + refPt.y sinf (a);

m[1] [0] = sinf (a);

m[l][l] = cosf (a];

 50

m[l] [2] = refPt.y * (1 - cosf (a) - refPt.x * sinf (a) ;

matrix3x3PreMultiply (m, theMatrix);

}

void transformPoints2 (int npts, wcPt2 *pts)

{

int k:

float tmp ;

for (k = 0; k< npts: k++)

{

tmp = theMatrix[0][0]* pts[k] .x * theMatrix[0][1] * pts[k].y+ theMatrix[0][2];

pts[k].y = theMatrix[1][0]* pts[k] .x * theMatrix[1][1] * pts[k].y+ theMatrix[1][2];

pts[k].x =tmp;

}

}

void main (int argc, char **argv)

{

wcPt2 pts[3]= { 50.0, 50.0, 150.0, 50.0, 100.0, 150.0};

wcPt2 refPt ={100.0. 100.0};

long windowID = openGraphics (*argv,200, 350);

setbackground (WHITE) ;

setcolor (BLUE);

pFillArea(3, pts):

matrix3x3SetIdentity(theMatrix);

scale2 (0.5, 0.5, refPt):

rotate2 (90.0, refPt);

translate2 (0, 150);

transformpoints2 (3 , pts)

pFillArea(3.pts);

sleep (10);

closeGraphics (windowID);

}

Other Transformations

1. Reflection

2. Shear

Reflection

A reflection is a transformation that produces a mirror image of an object. The mirror

image for a two-dimensional reflection is generated relative to an axis of reflection by

 51

rotating the object 180
o
 about the reflection axis. We can choose an axis of reflection in

the xy plane or perpendicular to the xy plane or coordinate origin

Reflection of an object about the x axis

Reflection the x axis is accomplished with the transformation matrix



















100

010

001

Reflection of an object about the y axis

Reflection the y axis is accomplished with the transformation matrix

















100

010

001

Reflection of an object about the coordinate origin

 52

Reflection about origin is accomplished with the transformation matrix





















100

010

001

Reflection axis as the diagonal line y = x

To obtain transformation matrix for reflection about diagonal y=x the transformation

sequence is

1. Clock wise rotation by 45
0

2. Reflection about x axis

3. counter clock wise by 45
0

 53

Reflection about the diagonal line y=x is accomplished with the transformation

matrix

















100

001

010

Reflection axis as the diagonal line y = -x

To obtain transformation matrix for reflection about diagonal y=-x the transformation

sequence is

1. Clock wise rotation by 45
0

2. Reflection about y axis

3. counter clock wise by 45
0

Reflection about the diagonal line y=-x is accomplished with the transformation

matrix















 



100

001

010

Shear

A Transformation that slants the shape of an object is called the shear transformation.

Two common shearing transformations are used. One shifts x coordinate values and other

shift y coordinate values. However in both the cases only one coordinate (x or y)

changes its coordinates and other preserves its values.

 54

X- Shear

The x shear preserves the y coordinates, but changes the x values which cause vertical

lines to tilt right or left as shown in figure

The Transformations matrix for x-shear is

















100

010

01 xsh

which transforms the coordinates as

x’ =x+ xsh .y

y’ = y

Y Shear

The y shear preserves the x coordinates, but changes the y values which cause horizontal

lines which slope up or down

The Transformations matrix for y-shear is

















100

01

001

ysh

which transforms the coordinates as

x’ =x

y’ = y+ ysh .x

 55

XY-Shear

The transformation matrix for xy-shear

which transforms the coordinates as

x’ =x+ xsh .y

y’ = y+ ysh .x

Shearing Relative to other reference line

We can apply x shear and y shear transformations relative to other reference lines. In x

shear transformations we can use y reference line and in y shear we can use x reference

line.

X shear with y reference line

We can generate x-direction shears relative to other reference lines with the

transformation matrix















 

100

010

.1 refxx yshsh

which transforms the coordinates as

x’ =x+ xsh (y- refy)

y’ = y

Example

Shx = ½ and yref=-1



















































1100

01

01

1

'

'

y

x

sh

sh

y

x

y

x

 56

Y shear with x reference line

We can generate y-direction shears relative to other reference lines with the

transformation matrix















 

100

010

.1 refxx yshsh

which transforms the coordinates as

x’ =x

y’ = shy (x- xref) + y

Example

Shy = ½ and xref=-1

 57

Two dimensional viewing

The viewing pipeline

A world coordinate area selected for display is called a window. An area on a display

device to which a window is mapped is called a view port. The window defines what is to

be viewed the view port defines where it is to be displayed.

The mapping of a part of a world coordinate scene to device coordinate is referred to as

viewing transformation. The two dimensional viewing transformation is referred to as

window to view port transformation of windowing transformation.

A viewing transformation using standard rectangles for the window and viewport

The two dimensional viewing transformation pipeline

 The viewing transformation in several steps, as indicated in Fig. First, we

construct the scene in world coordinates using the output primitives. Next to obtain a

particular orientation for the window, we can set up a two-dimensional viewing-

coordinate system in the world coordinate plane, and define a window in the viewing-

coordinate system.

The viewing- coordinate reference frame is used to provide a method for setting up

arbitrary orientations for rectangular windows. Once the viewing reference frame is

established, we can transform descriptions in world coordinates to viewing coordinates.

We then define a viewport in normalized coordinates (in the range from 0 to 1) and map

the viewing-coordinate description of the scene to normalized coordinates.

 58

 At the final step all parts of the picture that lie outside the viewport are clipped, and the

contents of the viewport are transferred to device coordinates. By changing the position

of the viewport, we can view objects at different positions on the display area of an

output device.

Window to view port coordinate transformation:

A point at position (xw,yw) in a designated window is mapped to viewport coordinates

(xv,yv) so that relative positions in the two areas are the same. The figure illustrates the

window to view port mapping.

A point at position (xw,yw) in the window is mapped into position (xv,yv) in the associated

view port. To maintain the same relative placement in view port as in window

 59

solving these expressions for view port position (xv,yv)

where scaling factors are

 sx = xvmax – xvmin sy = yvmax - yvmin

 xwmax – xwmin ywmax - ywmin

The conversion is performed with the following sequence of transformations.

1. Perform a scaling transformation using point position of (xw min, yw min) that

scales the window area to the size of view port.

2. Translate the scaled window area to the position of view port. Relative

proportions of objects are maintained if scaling factor are the same(Sx=Sy).

Otherwise world objects will be stretched or contracted in either the x or y direction when

displayed on output device. For normalized coordinates, object descriptions are mapped

to various display devices.

 Any number of output devices can be open in particular application and another

window view port transformation can be performed for each open output device. This

mapping called the work station transformation is accomplished by selecting a window

area in normalized apace and a view port are in coordinates of display device.

Mapping selected parts of a scene in normalized coordinate to different video

monitors with work station transformation.

minmax

min

minmax

min

minmax

min

minmax

min

ywyw

ywyw
=

yvyv

yvyv

xwxw

xwxw
=

xvxv

xvxv

















 
 

 
 

minmax

minmax
minmin

minmax

minmax
minmin

ywyw

yvyv
ywyw+yv=yv

xwxw

xvxv
xwxw+xv=xv











 60

Two Dimensional viewing functions

Viewing reference system in a PHIGS application program has following function.

 evaluateViewOrientationMatrix(x0,y0,xv,yv,error, viewMatrix)

where x0,y0 are coordinate of viewing origin and parameter xv, yv are the world

coordinate positions for view up vector.An integer error code is generated if the input

parameters are in error otherwise the view matrix for world-to-viewing transformation is

calculated. Any number of viewing transformation matrices can be defined in an

application.

To set up elements of window to view port mapping

evaluateViewMappingMatrix (xwmin, xwmax, ywmin, ywmax, xvmin, xvmax, yvmin,

yvmax, error, viewMappingMatrix)

 61

Here window limits in viewing coordinates are chosen with parameters xwmin, xwmax,

ywmin, ywmax and the viewport limits are set with normalized coordinate positions

xvmin, xvmax, yvmin, yvmax.

The combinations of viewing and window view port mapping for various workstations in

a viewing table with

setViewRepresentation(ws,viewIndex,viewMatrix,viewMappingMatrix,

xclipmin, xclipmax, yclipmin, yclipmax, clipxy)

Where parameter ws designates the output device and parameter view index sets an

integer identifier for this window-view port point. The matrices viewMatrix and

viewMappingMatrix can be concatenated and referenced by viewIndex.

 setViewIndex(viewIndex)

selects a particular set of options from the viewing table.

At the final stage we apply a workstation transformation by selecting a work station

window viewport pair.

setWorkstationWindow (ws, xwsWindmin, xwsWindmax,

ywsWindmin, ywsWindmax)

setWorkstationViewport (ws, xwsVPortmin, xwsVPortmax,

 ywsVPortmin, ywsVPortmax)

where was gives the workstation number. Window-coordinate extents are specified in the

range from 0 to 1 and viewport limits are in integer device coordinates.

Clipping operation

Any procedure that identifies those portions of a picture that are inside or outside of a

specified region of space is referred to as clipping algorithm or clipping. The region

against which an object is to be clipped is called clip window.

Algorithm for clipping primitive types:

 Point clipping

 Line clipping (Straight-line segment)

 Area clipping

 Curve clipping

 Text clipping

 62

Line and polygon clipping routines are standard components of graphics packages.

Point Clipping

Clip window is a rectangle in standard position. A point P=(x,y) for display, if following

inequalities are satisfied:

 xwmin <= x <= xwmax

 ywmin <= y <= ywmax

where the edges of the clip window (xwmin,xwmax,ywmin,ywmax) can be either the

world-coordinate window boundaries or viewport boundaries. If any one of these four

inequalities is not satisfied, the point is clipped (not saved for display).

Line Clipping

A line clipping procedure involves several parts. First we test a given line segment

whether it lies completely inside the clipping window. If it does not we try to determine

whether it lies completely outside the window . Finally if we can not identify a line as

completely inside or completely outside, we perform intersection calculations with one or

more clipping boundaries.

Process lines through “inside-outside” tests by checking the line endpoints. A line with

both endpoints inside all clipping boundaries such as line from P1 to P2 is saved. A line

with both end point outside any one of the clip boundaries line P3P4 is outside the

window.

Line clipping against a rectangular clip window

 63

All other lines cross one or more clipping boundaries. For a line segment with end points

(x1,y1) and (x2,y2) one or both end points outside clipping rectangle, the parametric

representation

could be used to determine values of u for an intersection with the clipping boundary

coordinates. If the value of u for an intersection with a rectangle boundary edge is outside

the range of 0 to 1, the line does not enter the interior of the window at that boundary. If

the value of u is within the range from 0 to 1, the line segment does indeed cross into the

clipping area. This method can be applied to each clipping boundary edge in to

determined whether any part of line segment is to displayed.

Cohen-Sutherland Line Clipping

 This is one of the oldest and most popular line-clipping procedures. The method

speeds up the processing of line segments by performing initial tests that reduce the

number of intersections that must be calculated.

 Every line endpoint in a picture is assigned a four digit binary code called a region

code that identifies the location of the point relative to the boundaries of the clipping

rectangle.

Binary region codes assigned to line end points according to relative position with

respect to the clipping rectangle.

 

  10121

121





u,yyu+y=y

,xxu+x=x

 64

Regions are set up in reference to the boundaries. Each bit position in region code is used

to indicate one of four relative coordinate positions of points with respect to clip window:

to the left, right, top or bottom. By numbering the bit positions in the region code as 1

through 4 from right to left, the coordinate regions are corrected with bit positions as

 bit 1: left

 bit 2: right

 bit 3: below

 bit4: above

 A value of 1 in any bit position indicates that the point is in that relative position.

Otherwise the bit position is set to 0. If a point is within the clipping rectangle the region

code is 0000. A point that is below and to the left of the rectangle has a region code of

0101.

Bit values in the region code are determined by comparing endpoint coordinate

values (x,y) to clip boundaries. Bit1 is set to 1 if x <xwmin.

 For programming language in which bit manipulation is possible region-code bit

values can be determined with following two steps.

 (1) Calculate differences between endpoint coordinates and clipping boundaries.

(2) Use the resultant sign bit of each difference calculation to set the corresponding value

in the region code.

bit 1 is the sign bit of x – xwmin

bit 2 is the sign bit of xwmax - x

bit 3 is the sign bit of y – ywmin

bit 4 is the sign bit of ywmax - y.

Once we have established region codes for all line endpoints, we can quickly determine

which lines are completely inside the clip window and which are clearly outside.

 Any lines that are completely contained within the window boundaries have a

region code of 0000 for both endpoints, and we accept

 65

these lines. Any lines that have a 1 in the same bit position in the region codes for each

endpoint are completely outside the clipping rectangle, and we reject these lines.

We would discard the line that has a region code of 1001 for one endpoint and a

code of 0101 for the other endpoint. Both endpoints of this line are left of the clipping

rectangle, as indicated by the 1 in the first bit position of each region code.

 A method that can be used to test lines for total clipping is to perform the logical

and operation with both region codes. If the result is not 0000,the line is completely

outside the clipping region.

 Lines that cannot be identified as completely inside or completely outside a clip

window by these tests are checked for intersection with window boundaries.

Line extending from one coordinates region to another may pass through the clip

window, or they may intersect clipping boundaries without entering window.

Cohen-Sutherland line clipping starting with bottom endpoint left, right , bottom

and top boundaries in turn and find that this point is below the clipping rectangle.

Starting with the bottom endpoint of the line from P1 to P2, we check P1 against

the left, right, and bottom boundaries in turn and find that this point is below the clipping

rectangle. We then find the intersection point P1’ with the bottom boundary and discard

the line section from P1 to P1’.

The line now has been reduced to the section from P1’ to P2,Since P2, is outside the

clip window, we check this endpoint against the boundaries and find that it is to the left

 66

of the window. Intersection point P2’ is calculated, but this point is above the window. So

the final intersection calculation yields P2”, and the line from P1’ to P2”is saved. This

completes processing for this line, so we save this part and go on to the next line.

Point P3 in the next line is to the left of the clipping rectangle, so we determine the

intersection P3’, and eliminate the line section from P3 to P3'. By checking region codes

for the line section from P3'to P4 we find that the remainder of the line is below the clip

window and can be discarded also.

Intersection points with a clipping boundary can be calculated using the slope-

intercept form of the line equation. For a line with endpoint coordinates (x1,y1) and (x2,y2)

and the y coordinate of the intersection point with a vertical boundary can be obtained

with the calculation.

 y =y1 +m (x-x1)

where x value is set either to xwmin or to xwmax and slope of line is calculated as

 m = (y2- y1) / (x2- x1)

the intersection with a horizontal boundary the x coordinate can be calculated as

 x= x1 +(y- y1) / m

with y set to either to ywmin or to ywmax.

Implementation of Cohen-sutherland Line Clipping

#define Round(a) ((int)(a+0.5))

#define LEFT_EDGE 0x1

#define RIGHT_EDGE 0x2

#define BOTTOM_EDGE 0x4

#define TOP_EDGE 0x8

#define TRUE 1

#define FALSE 0

#define INSIDE(a) (!a)

#define REJECT(a,b) (a&b)

#define ACCEPT(a,b) (!(a|b))

unsigned char encode(wcPt2 pt, dcPt winmin, dcPt winmax)

{

 67

unsigned char code=0x00;

if(pt.x<winmin.x)

code=code|LEFT_EDGE;

if(pt.x>winmax.x)

code=code|RIGHT_EDGE;

if(pt.y<winmin.y)

code=code|BOTTOM_EDGE;

if(pt.y>winmax.y)

code=code|TOP_EDGE;

return(code);

}

void swappts(wcPt2 *p1,wcPt2 *p2)

{

wcPt2 temp;

tmp=*p1;

*p1=*p2;

*p2=tmp;

}

void swapcodes(unsigned char *c1,unsigned char *c2)

{

unsigned char tmp;

tmp=*c1;

*c1=*c2;

*c2=tmp;

}

void clipline(dcPt winmin, dcPt winmax, wcPt2 p1,ecPt2 point p2)

{

unsigned char code1,code2;

int done=FALSE, draw=FALSE;

float m;

while(!done)

{

code1=encode(p1,winmin,winmax);

code2=encode(p2,winmin,winmax);

if(ACCEPT(code1,code2))

{

done=TRUE;

draw=TRUE;

}

else if(REJECT(code1,code2))

done=TRUE;

else

{

 68

if(INSIDE(code1))

{

swappts(&p1,&p2);

swapcodes(&code1,&code2);

}

if(p2.x!=p1.x)

m=(p2.y-p1.y)/(p2.x-p1.x);

if(code1 &LEFT_EDGE)

{

p1.y+=(winmin.x-p1.x)*m;

p1.x=winmin.x;

}

else if(code1 &RIGHT_EDGE)

{

p1.y+=(winmax.x-p1.x)*m;

p1.x=winmax.x;

}

else if(code1 &BOTTOM_EDGE)

{

if(p2.x!=p1.x)

p1.x+=(winmin.y-p1.y)/m;

p1.y=winmin.y;

}

else if(code1 &TOP_EDGE)

{

if(p2.x!=p1.x)

p1.x+=(winmax.y-p1.y)/m;

p1.y=winmax.y;

}

}

}

if(draw)

lineDDA(ROUND(p1.x),ROUND(p1.y),ROUND(p2.x),ROUND(p2.y));

}

Liang – Barsky line Clipping:

 Based on analysis of parametric equation of a line segment, faster line clippers

have been developed, which can be written in the form :

 x = x1 + u ∆x

 y = y1 + u ∆y 0<=u<=1

 69

where ∆x = (x2 - x1) and ∆y = (y2 - y1)

 In the Liang-Barsky approach we first the point clipping condition in parametric

form :

 xwmin <= x1 + u ∆x <=. xwmax

 ywmin <= y1 + u ∆y <= ywmax

 Each of these four inequalities can be expressed as

 µpk <= qk. k=1,2,3,4

 the parameters p & q are defined as

 p1 = -∆x q1 = x1 - xwmin

 p2 = ∆x q2 = xwmax - x1

 P3 = -∆y q3 = y1- ywmin

P4 = ∆y q4 = ywmax - y1

 Any line that is parallel to one of the clipping boundaries have pk=0 for values of

k corresponding to boundary k=1,2,3,4 correspond to left, right, bottom and top

boundaries. For values of k, find qk<0, the line is completely out side the boundary.

 If qk >=0, the line is inside the parallel clipping boundary.

 When pk<0 the infinite extension of line proceeds from outside to inside of the

infinite extension of this clipping boundary.

 If pk>0, the line proceeds from inside to outside, for non zero value of pk calculate

the value of u, that corresponds to the point where the infinitely extended line intersect

the extension of boundary k as

u = qk / pk

 For each line, calculate values for parameters u1and u2 that define the part of line

that lies within the clip rectangle. The value of u1 is determined by looking at the

rectangle edges for which the line proceeds from outside to the inside (p<0).

 For these edges we calculate

rk = qk / pk

 70

The value of u1 is taken as largest of set consisting of 0 and various values of r. The

value of u2 is determined by examining the boundaries for which lines proceeds from

inside to outside (P>0).

 A value of rkis calculated for each of these boundaries and value of u2 is the

minimum of the set consisting of 1 and the calculated r values.

 If u1>u2, the line is completely outside the clip window and it can be rejected.

 Line intersection parameters are initialized to values u1=0 and u2=1. for each

clipping boundary, the appropriate values for P and q are calculated and used by function

Cliptest to determine whether the line can be rejected or whether the intersection

parameter can be adjusted.

 When p<0, the parameter r is used to update u1.

 When p>0, the parameter r is used to update u2.

If updating u1 or u2 results in u1>u2 reject the line, when p=0 and q<0, discard the line,

it is parallel to and outside the boundary.If the line has not been rejected after all four

value of p and q have been tested , the end points of clipped lines are determined from

values of u1 and u2.

 The Liang-Barsky algorithm is more efficient than the Cohen-Sutherland

algorithm since intersections calculations are reduced. Each update of parameters u1 and

u2 require only one division and window intersections of these lines are computed only

once.

Cohen-Sutherland algorithm, can repeatedly calculate intersections along a line

path, even through line may be completely outside the clip window. Each intersection

calculations require both a division and a multiplication.

Implementation of Liang-Barsky Line Clipping

#define Round(a) ((int)(a+0.5))

int clipTest (float p, float q, gfloat *u1, float *u2)

{

float r;

int retval=TRUE;

if (p<0.0)

{

 71

r=q/p

 if (r>*u2)

 retVal=FALSE;

 else

if (r>*u1)

 *u1=r;

}

else

if (p>0.0)

{

r=q/p

if (r<*u1)

retVal=FALSE;

else

if (r<*u2)

*u2=r;

}

else

if)q<0.0)

retVal=FALSE

return(retVal);

void clipLine (dcPt winMin, dcPt winMax, wcPt2 p1, wcpt2 p2)

{

float u1=0.0, u2=1.0, dx=p2.x-p1.x,dy;

if (clipTest (-dx, p1.x-winMin.x, &u1, &u2))

if (clipTest (dx, winMax.x-p1.x, &u1, &u2))

{

dy=p2.y-p1.y;

if (clipTest (-dy, p1.y-winMin.y, &u1, &u2))

if (clipTest (dy, winMax.y-p1.y, &u1, &u2))

{

if (u1<1.0)

{

p2.x=p1.x+u2*dx;

p2.y=p1.y+u2*dy;

}

if (u1>0.0)

{

p1.x=p1.x+u1*dx;

p1.y=p1.y+u1*dy;

}

lineDDA(ROUND(p1.x),ROUND(p1.y),ROUND(p2.x),ROUND(p2.y));

 72

}

}

}

Nicholl-Lee-Nicholl Line clipping

By creating more regions around the clip window, the Nicholl-Lee-Nicholl (or NLN)

algorithm avoids multiple clipping of an individual line segment. In the Cohen-

Sutherland method, multiple intersections may be calculated.These extra intersection

calculations are eliminated in the NLN algorithm by carrying out more region testing

before intersection positions are calculated.

Compared to both the Cohen-Sutherland and the Liang-Barsky algorithms, the

Nicholl-Lee-Nicholl algorithm performs fewer comparisons and divisions. The trade-off

is that the NLN algorithm can only be applied to two-dimensional dipping, whereas both

the Liang-Barsky and the Cohen-Sutherland methods are easily extended to three-

dimensional scenes.

For a line with endpoints P1 and P2 we first determine the position of point P1,

for the nine possible regions relative to the clipping rectangle. Only the three regions

shown in Fig. need to be considered. If P1 lies in any one of the other six regions, we can

move it to one of the three regions in Fig. using a symmetry transformation. For

example, the region directly above the clip window can be transformed to the region left

of the clip window using a reflection about the line y = -x, or we could use a 90 degree

counterclockwise rotation.

Three possible positions for a line endpoint p1(a) in the NLN algorithm

 73

Case 1: p1 inside region

Case 2: p1 across edge

Case 3: p1 across corner

Next, we determine the position of P2 relative to P1. To do this, we create some new

regions in the plane, depending on the location of P1. Boundaries of the new regions are

half-infinite line segments that start at the position of P1 and pass through the window

corners. If P1 is inside the clip window and P2 is outside, we set up the four regions

shown in Fig

The four clipping regions used in NLN alg when p1 is inside and p2 outside the clip

window

The intersection with the appropriate window boundary is then carried out,

depending on which one of the four regions (L, T, R, or B) contains P2. If both P1 and P2

are inside the clipping rectangle, we simply save the entire line.

If P1 is in the region to the left of the window, we set up the four regions, L, LT, LR, and

LB, shown in Fig.

 74

These four regions determine a unique boundary for the line segment. For instance, if P2

is in region L, we clip the line at the left boundary and save the line segment from this

intersection point to P2. But if P2 is in region LT, we save the line segment from the left

window boundary to the top boundary. If P2 is not in any of the four regions, L, LT, LR,

or LB, the entire line is clipped.

For the third case, when P1 is to the left and above the clip window, we usethe clipping

regions in Fig.

Fig : The two possible sets of clipping regions used in NLN algorithm when P1 is

above and to the left of the clip window

In this case, we have the two possibilities shown, depending on the position of P1,

relative to the top left corner of the window. If P2, is in one of the regions T, L, TR, TB,

LR, or LB, this determines a unique clip window edge for the intersection calculations.

Otherwise, the entire line is rejected.

To determine the region in which P2 is located, we compare the slope of the

 75

line to the slopes of the boundaries of the clip regions. For example, if P1 is left of

the clipping rectangle (Fig. a), then P2, is in region LT if

slopeP1PTR<slopeP1P2<slopeP1PTL

 or

yT – y1 < y2 – y1 < yT – y1

 xR – x1 x2 – x1 xL – x1

 And we clip the entire line if

 (yT – y1)(x2 – x1) < (xL – x1) (y2 – y1)

The coordinate difference and product calculations used in the slope tests are

saved and also used in the intersection calculations. From the parametric equations

 x = x1 + (x2 – x1)u

 y = y1 + (y2 – y1)u

an x-intersection position on the left window boundary is x = xL,, with

u= (xL – x1)/ (x2 – x1) so that the y-intersection position is

 y = y1 + y2 – y1 (xL – x1)

 x2 – x1

And an intersection position on the top boundary has y = yT and u = (yT – y1)/ (y2 – y1)

with

 x = x1 + x2 – x1 (yT – y1)

 y2 – y1

POLYGON CLIPPING

To clip polygons, we need to modify the line-clipping procedures. A polygon

boundary processed with a line clipper may be displayed as a series of unconnected line

segments (Fig.), depending on the orientation of the polygon to the clipping window.

 76

Display of a polygon processed by a line clipping algorithm

For polygon clipping, we require an algorithm that will generate one or more closed areas

that are then scan converted for the appropriate area fill. The output of a polygon clipper

should be a sequence of vertices that defines the clipped polygon boundaries.

Sutherland – Hodgeman polygon clipping:

 A polygon can be clipped by processing the polygon boundary as a whole against

each window edge. This could be accomplished by processing all polygon vertices

against each clip rectangle boundary.

 There are four possible cases when processing vertices in sequence around the

perimeter of a polygon. As each point of adjacent polygon vertices is passed to a window

boundary clipper, make the following tests:

1. If the first vertex is outside the window boundary and second vertex is inside,

both the intersection point of the polygon edge with window boundary and

second vertex are added to output vertex list.

2. If both input vertices are inside the window boundary, only the second vertex

is added to the output vertex list.

 77

3. If first vertex is inside the window boundary and second vertex is outside only

the edge intersection with window boundary is added to output vertex list.

4. If both input vertices are outside the window boundary nothing is added to the

output list.

Clipping a polygon against successive window boundaries.

Successive processing of pairs of polygon vertices against the left window boundary

Clipping a polygon against the left boundary of a window, starting with vertex 1.

Primed numbers are used to label the points in the output vertex list for this window

boundary.

 78

vertices 1 and 2 are found to be on outside of boundary. Moving along vertex 3 which is

inside, calculate the intersection and save both the intersection point and vertex 3. Vertex

4 and 5 are determined to be inside and are saved. Vertex 6 is outside so we find and save

the intersection point. Using the five saved points we repeat the process for next window

boundary.

Implementing the algorithm as described requires setting up storage for an output list of

vertices as a polygon clipped against each window boundary. We eliminate the

intermediate output vertex lists by simply by clipping individual vertices at each step and

passing the clipped vertices on to the next boundary clipper.

A point is added to the output vertex list only after it has been determined to be inside or

on a window boundary by all boundary clippers. Otherwise the point does not continue in

the pipeline.

A polygon overlapping a rectangular clip window

Processing the vertices of the polygon in the above fig. through a boundary clipping

pipeline. After all vertices are processed through the pipeline, the vertex list is {

v2”, v2’, v3,v3’}

 79

Implementation of Sutherland-Hodgeman Polygon Clipping

typedef enum { Left,Right,Bottom,Top } Edge;

#define N_EDGE 4

#define TRUE 1

#define FALSE 0

int inside(wcPt2 p, Edge b,dcPt wmin,dcPt wmax)

{

switch(b)

{

case Left: if(p.x<wmin.x) return (FALSE); break;

case Right:if(p.x>wmax.x) return (FALSE); break;

case bottom:if(p.y<wmin.y) return (FALSE); break;

case top: if(p.y>wmax.y) return (FALSE); break;

}

return (TRUE);

}

int cross(wcPt2 p1, wcPt2 p2,Edge b,dcPt wmin,dcPt wmax)

{

if(inside(p1,b,wmin,wmax)==inside(p2,b,wmin,wmax))

return (FALSE);

else

return (TRUE);

}

wcPt2 (wcPt2 p1, wcPt2 p2,int b,dcPt wmin,dcPt wmax)

{

wcPt2 iPt;

float m;

if(p1.x!=p2.x)

m=(p1.y-p2.y)/(p1.x-p2.x);

switch(b)

{

case Left:

ipt.x=wmin.x;

 80

ipt.y=p2.y+(wmin.x-p2.x)*m;

break;

case Right:

ipt.x=wmax.x;

ipt.y=p2.y+(wmax.x-p2.x)*m;

break;

case Bottom:

ipt.y=wmin.y;

if(p1.x!=p2.x)

ipt.x=p2.x+(wmin.y-p2.y)/m;

else

ipt.x=p2.x;

break;

case Top:

ipt.y=wmax.y;

if(p1.x!=p2.x)

ipt.x=p2.x+(wmax.y-p2.y)/m;

else

ipt.x=p2.x;

break;

}

return(ipt);

}

void clippoint(wcPt2 p,Edge b,dcPt wmin,dcPt wmax, wcPt2 *pout,int *cnt, wcPt2

*first[],struct point *s)

{

wcPt2 iPt;

if(!first[b])

first[b]=&p;

else

if(cross(p,s[b],b,wmin,wmax))

{

ipt=intersect(p,s[b],b,wmin,wmax);

if(b<top)

clippoint(ipt,b+1,wmin,wmax,pout,cnt,first,s);

else

{

pout[*cnt]=ipt;

(*cnt)++;

}

}

s[b]=p;

if(inside(p,b,wmin,wmax))

 81

if(b<top)

clippoint(p,b+1,wmin,wmax,pout,cnt,first,s);

else

{

pout[*cnt]=p;

(*cnt)++;

}

}

void closeclip(dcPt wmin,dcPt wmax, wcPt2 *pout,int *cnt,wcPt2 *first[], wcPt2 *s)

{

wcPt2 iPt;

Edge b;

for(b=left;b<=top;b++)

{

if(cross(s[b],*first[b],b,wmin,wmax))

{

i=intersect(s[b],*first[b],b,wmin,wmax);

if(b<top)

clippoint(i,b+1,wmin,wmax,pout,cnt,first,s);

else

{

pout[*cnt]=i;

(*cnt)++;

}

}

}

}

int clippolygon(dcPt point wmin,dcPt wmax,int n,wcPt2 *pin, wcPt2 *pout)

{

wcPt2 *first[N_EDGE]={0,0,0,0},s[N_EDGE];

int i,cnt=0;

for(i=0;i<n;i++)

clippoint(pin[i],left,wmin,wmax,pout,&cnt,first,s);

closeclip(wmin,wmax,pout,&cnt,first,s);

return(cnt);

}

Weiler- Atherton Polygon Clipping

 This clipping procedure was developed as a method for identifying visible

surfaces, and so it can be applied with arbitrary polygon-clipping regions.

 82

The basic idea in this algorithm is that instead of always proceeding around the

polygon edges as vertices are processed, we sometimes want to follow the window

boundaries. Which path we follow depends on the polygon-processing direction

(clockwise or counterclockwise) and whether the pair of polygon vertices currently being

processed represents an outside-to-inside pair or an inside- to-outside pair. For clockwise

processing of polygon vertices, we use the following rules:

 For an outside-to-inside pair of vertices, follow the polygon boundary.

 For an inside-to-outside pair of vertices,. follow the window boundary in a

clockwise direction.

In the below Fig. the processing direction in the Weiler-Atherton algorithm and the

resulting clipped polygon is shown for a rectangular clipping window.

An improvement on the Weiler-Atherton algorithm is the Weiler algorithm,

which applies constructive solid geometry ideas to clip an arbitrary polygon

against any polygon clipping region.

Curve Clipping

 Curve-clipping procedures will involve nonlinear equations, and this requires

more processing than for objects with linear boundaries. The bounding rectangle for a

circle or other curved object can be used first to test for overlap with a rectangular clip

window.

If the bounding rectangle for the object is completely inside the window, we save

the object. If the rectangle is determined to be completely outside the window, we discard

the object. In either case, there is no further computation necessary.

But if the bounding rectangle test fails, we can look for other computation-saving

approaches. For a circle, we can use the coordinate extents of individual quadrants and

then octants for preliminary testing before calculating curve-window intersections.

The below figure illustrates circle clipping against a rectangular window. On the

first pass, we can clip the bounding rectangle of the object against the bounding rectangle

 83

of the clip region. If the two regions overlap, we will need to solve the simultaneous line-

curve equations to obtain the clipping intersection points.

Clipping a filled circle

Text clipping

 There are several techniques that can be used to provide text clipping in a graphics

package. The clipping technique used will depend on the methods used to

generate characters and the requirements of a particular application.

The simplest method for processing character strings relative to a window

boundary is to use the all-or-none string-clipping strategy shown in Fig. . If all of the

string is inside a clip window, we keep it. Otherwise, the string is discarded. This

procedure is implemented by considering a bounding rectangle around the text pattern.

The boundary positions of the rectangle are then compared to the window boundaries,

and the string is rejected if there is any overlap. This method produces the fastest text

clipping.

Text clipping using a bounding rectangle about the entire string

An alternative to rejecting an entire character string that overlaps a window

boundary is to use the all-or-none character-clipping strategy. Here we discard only

those characters that are not completely inside the window .In this case, the boundary

limits of individual characters are compared to the window. Any character that either

overlaps or is outside a window boundary is clipped.

 84

 Text clipping using a bounding rectangle about individual characters.

 A final method for handling text clipping is to clip the components of individual

characters. We now treat characters in much the same way that we treated lines. If an

individual character overlaps a clip window boundary, we clip off the parts of the

character that are outside the window.

Text Clipping performed on the components of individual characters

Exterior clipping:

 Procedure for clipping a picture to the interior of a region by eliminating

everything outside the clipping region. By these procedures the inside region of the

picture is saved. To clip a picture to the exterior of a specified region. The picture parts to

be saved are those that are outside the region. This is called as exterior clipping.

Objects within a window are clipped to interior of window when other higher

priority window overlap these objects. The objects are also clipped to the exterior of

overlapping windows.

Unit II – Computer Graphics

1

UNIT - II THREE-DIMENSIONAL CONCEPTS
Parallel and Perspective projections-Three-Dimensional Object

Representations – Polygons, Curved lines,Splines, Quadric Surfaces-
Visualization of data sets- Three- Transformations – Three- Dimensional
Viewing –Visible surface identification.

2.1 Three Dimensional Concepts

2.1.1 Three Dimensional Display Methods:

 To obtain a display of a three dimensional scene that has been
modeled in world coordinates, we must setup a co-ordinate

reference for the ‘camera’.

 This coordinate reference defines the position and orientation for

the plane of the camera film which is the plane we want to use to
display a view of the objects in the scene.

 Object descriptions are then transferred to the camera reference
coordinates and projected onto the selected display plane.

 The objects can be displayed in wire frame form, or we can apply
lighting and surface rendering techniques to shade the visible

surfaces.

Parallel Projection:

 Parallel projection is a method for generating a view of a solid
object is to project points on the object surface along parallel lines

onto the display plane.

 In parallel projection, parallel lines in the world coordinate scene
project into parallel lines on the two dimensional display planes.

 This technique is used in engineering and architectural drawings
to represent an object with a set of views that maintain relative
proportions of the object.

 The appearance of the solid object can be reconstructed from the
major views.

Unit II – Computer Graphics

2

Fig. Three parallel projection views of an object, showing

relative proportions from different viewing positions.

Perspective Projection:

 It is a method for generating a view of a three dimensional scene is
to project points to the display plane alone converging paths.

 This makes objects further from the viewing position be displayed
smaller than objects of the same size that are nearer to the viewing

position.

 In a perspective projection, parallel lines in a scene that are not

parallel to the display plane are projected into converging lines.

 Scenes displayed using perspective projections appear more

realistic, since this is the way that our eyes and a camera lens
form images.

Depth Cueing:

 Depth information is important to identify the viewing direction,

which is the front and which is the back of displayed object.

 Depth cueing is a method for indicating depth with wire frame

displays is to vary the intensity of objects according to their
distance from the viewing position.

 Depth cueing is applied by choosing maximum and minimum

intensity (or color) values and a range of distance over which the
intensities are to vary.

Visible line and surface identification:

 A simplest way to identify the visible line is to highlight the visible

lines or to display them in a different color.

 Another method is to display the non visible lines as dashed lines.

Surface Rendering:

 Surface rendering method is used to generate a degree of realism
in a displayed scene.

Unit II – Computer Graphics

3

 Realism is attained in displays by setting the surface intensity of
objects according to the lighting conditions in the scene and
surface characteristics.

 Lighting conditions include the intensity and positions of light

sources and the background illumination.

 Surface characteristics include degree of transparency and how

rough or smooth the surfaces are to be.

Exploded and Cutaway views:

 Exploded and cutaway views of objects can be to show the internal
structure and relationship of the objects parts.

 An alternative to exploding an object into its component parts is
the cut away view which removes part of the visible surfaces to

show internal structure.

Three-dimensional and Stereoscopic Views:

 In Stereoscopic views, three dimensional views can be obtained by
reflecting a raster image from a vibrating flexible mirror.

 The vibrations of the mirror are synchronized with the display of
the scene on the CRT.

 As the mirror vibrates, the focal length varies so that each point in

the scene is projected to a position corresponding to its depth.

 Stereoscopic devices present two views of a scene; one for the left
eye and the other for the right eye.

 The two views are generated by selecting viewing positions that
corresponds to the two eye positions of a single viewer.

 These two views can be displayed on alternate refresh cycles of a

raster monitor, and viewed through glasses that alternately darken
first one lens then the other in synchronization with the monitor
refresh cycles.

2.1.2 Three Dimensional Graphics Packages

 The 3D package must include methods for mapping scene
descriptions onto a flat viewing surface.

 There should be some consideration on how surfaces of solid

objects are to be modeled, how visible surfaces can be identified,
how transformations of objects are preformed in space, and how to
describe the additional spatial properties.

 World coordinate descriptions are extended to 3D, and users are
provided with output and input routines accessed with
specifications such as

o Polyline3(n, WcPoints)

Unit II – Computer Graphics

4

o Fillarea3(n, WcPoints)

Unit II – Computer Graphics

5

o Text3(WcPoint, string)

o Getlocator3(WcPoint)

o Translate3(translateVector, matrix Translate)

Where points and vectors are specified with 3 components and
transformation matrices have 4 rows and 4 columns.

2.2 Three Dimensional Object Representations

Representation schemes for solid objects are divided into two

categories as follows:

1. Boundary Representation (B-reps)

It describes a three dimensional object as a set of surfaces that

separate the object interior from the environment. Examples are
polygon facets and spline patches.

2. Space Partitioning representation

It describes the interior properties, by partitioning the spatial
region containing an object into a set of small, nonoverlapping,
contiguous solids(usually cubes).

Eg: Octree Representation

2.2.1 Polygon Surfaces

Polygon surfaces are boundary representations for a 3D graphics
object is a set of polygons that enclose the object interior.

Polygon Tables

 The polygon surface is specified with a set of vertex coordinates
and associated attribute parameters.

 For each polygon input, the data are placed into tables that are to
be used in the subsequent processing.

 Polygon data tables can be organized into two groups: Geometric
tables and attribute tables.

Geometric Tables

Contain vertex coordinates and parameters to identify the spatial
orientation of the polygon surfaces.

Attribute tables

Contain attribute information for an object such as parameters

specifying the degree of transparency of the object and its surface
reflectivity and texture characteristics.

A convenient organization for storing geometric data is to create three
lists:

1. The Vertex Table

Coordinate values for each vertex in the object are stored in

this table.

Unit II – Computer Graphics

6

2. The Edge Table

It contains pointers back into the vertex table to identify the

vertices for each polygon edge.

3. The Polygon Table

It contains pointers back into the edge table to identify the
edges for each polygon.

This is shown in fig

Vertex table Edge Table Polygon surface table

V1 : X1, Y1, Z1 E1 : V1, V2 S1 : E1, E2, E3

V2 : X2, Y2, Z2 E2 : V2, V3 S2 : E3, E4, E5, E6

V3 : X3, Y3, Z3 E3 : V3, V1

V4 : X4, Y4, Z4 E4 : V3, V4

V5 : X5, Y5, Z5 E5 : V4, V5

 E6 : V5, V1

 Listing the geometric data in three tables provides a convenient

reference to the individual components (vertices, edges and
polygons) of each object.

 The object can be displayed efficiently by using data from the edge
table to draw the component lines.

 Extra information can be added to the data tables for faster
information extraction. For instance, edge table can be expanded

Unit II – Computer Graphics

7

to include forward points into the polygon table so that common
edges between polygons can be identified more rapidly.

E1 : V1, V2, S1

E2 : V2, V3, S1

E3 : V3, V1, S1, S2

E4 : V3, V4, S2

E5 : V4, V5, S2

E6 : V5, V1, S2

 This is useful for the rendering procedure that must vary surface

shading smoothly across the edges from one polygon to the next.
Similarly, the vertex table can be expanded so that vertices are

cross-referenced to corresponding edges.

 Additional geometric information that is stored in the data tables
includes the slope for each edge and the coordinate extends for

each polygon. As vertices are input, we can calculate edge slopes
and we can scan the coordinate values to identify the minimum

and maximum x, y and z values for individual polygons.

 The more information included in the data tables will be easier to
check for errors.

 Some of the tests that could be performed by a graphics package
are:

1. That every vertex is listed as an endpoint for at least two
edges.

2. That every edge is part of at least one polygon.

3. That every polygon is closed.

4. That each polygon has at least one shared edge.

5. That if the edge table contains pointers to polygons, every

edge referenced by a polygon pointer has a reciprocal
pointer back to the polygon.

Plane Equations:

 To produce a display of a 3D object, we must process the input data

representation for the object through several procedures such as,

- Transformation of the modeling and world coordinate

descriptions to viewing coordinates.

- Then to device coordinates:

- Identification of visible surfaces

- The application of surface-rendering procedures.

 For these processes, we need information about the spatial
orientation of the individual surface components of the object. This

Unit II – Computer Graphics

8

information is obtained from the vertex coordinate value and the
equations that describe the polygon planes.

The equation for a plane surface is

Ax + By+ Cz + D = 0 ----(1)

Where (x, y, z) is any point on the plane, and the coefficients A,B,C
and D are constants describing the spatial properties of the plane.

 We can obtain the values of A, B,C and D by solving a set of three
plane equations using the coordinate values for three non collinear

points in the plane.

 For that, we can select three successive polygon vertices (x1, y1, z1),

(x2, y2, z2) and (x3, y3, z3) and solve the following set of
simultaneous linear plane equations for the ratios A/D, B/D and
C/D.

(A/D)xk + (B/D)yk + (c/D)zk = -1, k=1,2,3 -----(2)

 The solution for this set of equations can be obtained in determinant
form, using Cramer’s rule as

 1 y1 z1
 x1 1 z1

A = 1 y2 z2 B = x2 1 z2

 1 y3 z3
 x3 1 z3

x1

y1

1

x1

y1

z1

C = x2 y2 1 D = - x2 y2 z2 ------(3)

 x3 y3 1 x3 y3 z3

 Expanding the determinants , we can write the calculations for the
plane coefficients in the form:

A = y1 (z2 –z3) + y2(z3 –z1) + y3 (z1 –z2)

B = z1 (x2 -x3) + z2 (x3 -x1) + z3 (x1 -x2)

C = x1 (y2 –y3) + x2 (y3 –y1) + x3 (y1 -y2)

D = -x1 (y2 z3 -y3 z2) - x2 (y3 z1 -y1 z3) - x3 (y1 z2 -y2 z1) ------(4)

 As vertex values and other information are entered into the
polygon data structure, values for A, B, C and D are computed for

each polygon and stored with the other polygon data.

 Plane equations are used also to identify the position of spatial

points relative to the plane surfaces of an object. For any point (x,
y, z) hot on a plane with parameters A,B,C,D, we have

Ax + By + Cz + D ≠ 0

Unit II – Computer Graphics

9

 We can identify the point as either inside or outside the plane

surface according o the sigh (negative or positive) of Ax + By + Cz +
D:

If Ax + By + Cz + D < 0, the point (x, y, z) is inside the
surface.

If Ax + By + Cz + D > 0, the point (x, y, z) is outside the
surface.

 These inequality tests are valid in a right handed Cartesian

system, provided the plane parmeters A,B,C and D were calculated
using vertices selected in a counter clockwise order when viewing
the surface in an outside-to-inside direction.

Polygon Meshes

 A single plane surface can be specified with a function such as
fillArea. But when object surfaces are to be tiled, it is more

convenient to specify the surface facets with a mesh function.

 One type of polygon mesh is the triangle strip.A triangle strip
formed with 11 triangles connecting 13 vertices.

 This function produces n-2 connected triangles given the

coordinates for n vertices.

 Another similar function in the quadrilateral mesh, which
generates a mesh of (n-1) by (m-1) quadrilaterals, given the

coordinates for an n by m array of vertices. Figure shows 20
vertices forming a mesh of 12 quadrilaterals.

Unit II – Computer Graphics

1
0

2.2.2 Curved Lines and Surfaces

 Displays of three dimensional curved lines and surface can be
generated from an input set of mathematical functions defining the

objects or from a set of user specified data points.

Unit II – Computer Graphics

When functions are specified, a package can project the defining

9

equations for a curve to the display plane and plot pixel positions
along the path of the projected function.

 For surfaces, a functional description in decorated to produce a
polygon-mesh approximation to the surface.

2.2.3 Quadric Surfaces

 The quadric surfaces are described with second degree equations
(quadratics).

 They include spheres, ellipsoids, tori, parabolids, and
hyperboloids.

Sphere

 In Cartesian coordinates, a spherical surface with radius r

centered on the coordinates origin is defined as the set of points (x,
y, z) that satisfy the equation.

x2 + y2 + z2 = r2 -------------------------(1)

 The spherical surface can be represented in parametric form by
using latitude and longitude angles

x = r cosφ cosθ, -л/2 <= φ<= л/2

y = r cosφ sinθ, -л <= φ <= л -------(2)

z = rsinφ

 The parameter representation in eqn (2) provides a symmetric

range for the angular parameter θ and φ.

Ellipsoid

 Ellipsoid surface is an extension of a spherical surface where the
radius in three mutually perpendicular directions can have

different values

10

Unit II – Computer Graphics

2 2 2

 The Cartesian representation for points over the surface of an
ellipsoid centered on the origin is

x
+

y
+

rx ry

z
= 1

rz

 The parametric representation for the ellipsoid in terms of the
latitude angle φ and the longitude angle θ is

x = rx cosφ cosθ, -л/2 <= φ <= л/2

y = ry cosφ sinθ, -л <= φ <= л

z = rz sinφ

Torus

Torus is a doughnut shaped object.

It can be generated by rotating a circle or other conic about a

specified axis.

A torus with a circular cross section centered on the
coordinate origin

11

Unit II – Computer Graphics

2
2

2 2

 The Cartesian representation for points over the surface of a torus

can be written in the form

r
x y

rx ry

z
= 1

rz

where r in any given offset value.

 Parametric representation for a torus is similar to those for an
ellipse, except that angle φ extends over 360o.

 Using latitude and longitude angles φ and θ, we can describe the
torus surface as the set of points that satisfy.

x = rx (r + cosφ) cosθ, -л <= φ <= л

y = ry(r+ cosφ)sinθ, -л <= φ <= л

z = rz sinφ

2.2.4 Spline Representations

 A Spline is a flexible strip used to produce a smooth curve through
a designated set of points.

 Several small weights are distributed along the length of the strip
to hold it in position on the drafting table as the curve is drawn.

 The Spline curve refers to any sections curve formed with

polynomial sections satisfying specified continuity conditions at
the boundary of the pieces.

 A Spline surface can be described with two sets of orthogonal
spline curves.

 Splines are used in graphics applications to design curve and
surface shapes, to digitize drawings for computer storage, and to

12

Unit II – Computer Graphics

specify animation paths for the objects or the camera in the scene.

CAD applications for splines include the design of automobiles
bodies, aircraft and spacecraft surfaces, and ship hulls.

Interpolation and Approximation Splines

 Spline curve can be specified by a set of coordinate positions called

control points which indicates the general shape of the curve.

 These control points are fitted with piecewise continuous

parametric polynomial functions in one of the two ways.

1. When polynomial sections are fitted so that the curve passes

through each control point the resulting curve is said to
interpolate the set of control points.

A set of six control points interpolated with piecewise
continuous polynomial sections

2. When the polynomials are fitted to the general control point
path without necessarily passing through any control points,
the resulting curve is said to approximate the set of control

points.

A set of six control points approximated with piecewise
continuous polynomial sections

 Interpolation curves are used to digitize drawings or to specify
animation paths.

 Approximation curves are used as design tools to structure object
surfaces.

13

Unit II – Computer Graphics

 A spline curve is designed , modified and manipulated with

operations on the control points.The curve can be translated,
rotated or scaled with transformation applied to the control points.

 The convex polygon boundary that encloses a set of control points

is called the convex hull.

 The shape of the convex hull is to imagine a rubber band stretched

around the position of the control points so that each control point
is either on the perimeter of the hull or inside it.

Convex hull shapes (dashed lines) for two sets of control points

Parametric Continuity Conditions

 For a smooth transition from one section of a piecewise parametric

curve to the next various continuity conditions are needed at the

connection points.

 If each section of a spline in described with a set of parametric
coordinate functions or the form

x = x(u), y = y(u), z = z(u), u1<= u <= u2 -----(a)

 We set parametric continuity by matching the parametric
derivatives of adjoining curve sections at their common boundary.

 Zero order parametric continuity referred to as C0 continuity,
means that the curves meet. (i.e) the values of x,y, and z evaluated

at u2 for the first curve section are equal. Respectively, to the value

of x,y, and z evaluated at u1 for the next curve section.

 First order parametric continuity referred to as C1 continuity
means that the first parametric derivatives of the coordinate

functions in equation (a) for two successive curve sections are
equal at their joining point.

 Second order parametric continuity, or C2 continuity means

that both the first and second parametric derivatives of the two
curve sections are equal at their intersection.

14

Unit II – Computer Graphics

Higher order parametric continuity conditions are defined

similarly.

Piecewise construction of a curve by joining two curve segments
using different orders of continuity

a)Zero order continuity only

b)First order continuity only

c) Second order continuity only

Geometric Continuity Conditions

 To specify conditions for geometric continuity is an alternate

method for joining two successive curve sections.

 The parametric derivatives of the two sections should be

proportional to each other at their common boundary instead of
equal to each other.

 Zero order Geometric continuity referred as G0 continuity means

that the two curves sections must have the same coordinate
position at the boundary point.

 First order Geometric Continuity referred as G1 continuity means
that the parametric first derivatives are proportional at the

interaction of two successive sections.

 Second order Geometric continuity referred as G2 continuity means

that both the first and second parametric derivatives of the two
curve sections are proportional at their boundary. Here the
curvatures of two sections will match at the joining position.

15

Unit II – Computer Graphics

Three control points fitted with two curve sections joined with a)

parametric continuity

b)geometric continuity where the tangent vector of curve C3 at
point p1 has a greater magnitude than the tangent vector of curve
C1 at p1.

Spline specifications

There are three methods to specify a spline representation:

1. We can state the set of boundary conditions that are imposed on the
spline; (or)

2. We can state the matrix that characterizes the spline; (or)

3. We can state the set of blending functions that determine how
specified geometric constraints on the curve are combined to calculate
positions along the curve path.

 To illustrate these three equivalent specifications, suppose we have

the following parametric cubic polynomial representation for the x

coordinate along the path of a spline section.

x(u)=axu3 + axu2 + cxu + dx 0<= u <=1 ----------(1)

Boundary conditions for this curve might be set on the

endpoint coordinates x(0) and x(1) and on the parametric first derivatives
at the endpoints x’(0) and x’(1). These boundary conditions are sufficient

to determine the values of the four coordinates ax, bx, cx and dx.

From the boundary conditions we can obtain the matrix that
characterizes this spline curve by first rewriting eq(1) as the matrix

product

16

Unit II – Computer Graphics

1] ax

 bx

 cx -------(2)

 dx

x(u) = [u3 u2 u1

= U.C

where U is the row matrix of power of parameter u and C is the

coefficient column matrix.

 Using equation (2) we can write the boundary conditions in matrix

form and solve for the coefficient matrix C as

C = Mspline . Mgeom -----(3)

Where Mgeom in a four element column matrix containing the geometric
constraint values on the spline and Mspline in the 4 * 4 matrix that
transforms the geometric constraint values to the polynomial coefficients
and provides a characterization for the spline curve.

 Matrix Mgeom contains control point coordinate values and other
geometric constraints.

 We can substitute the matrix representation for C into equation (2)
to obtain.

x (u) = U . Mspline . Mgeom ------(4)

 The matrix Mspline, characterizing a spline representation, called

the basis matriz is useful for transforming from one spline

representation to another.

 Finally we can expand equation (4) to obtain a polynomial

representation for coordinate x in terms of the geometric
constraint parameters.

x(u) = ∑ gk. BFk(u)

where gk are the constraint parameters, such as the control point

coordinates and slope of the curve at the control points and BFk(u) are
the polynomial blending functions.

2.3 Visualization of Data Sets

 The use of graphical methods as an aid in scientific and

engineering analysis is commonly referred to as scientific
visualization.

 This involves the visualization of data sets and processes that

may be difficult or impossible to analyze without graphical
methods. Example medical scanners, satellite and spacecraft

scanners.

17

Unit II – Computer Graphics

 Visualization techniques are useful for analyzing process that

occur over a long period of time or that cannot observed directly.
Example quantum mechanical phenomena and special relativity
effects produced by objects traveling near the speed of light.

 Scientific visualization is used to visually display , enhance and
manipulate information to allow better understanding of the data.

 Similar methods employed by commerce , industry and other

nonscientific areas are sometimes referred to as business
visualization.

 Data sets are classified according to their spatial distribution (2D
or 3D) and according to data type (scalars , vectors , tensors and

multivariate data).

Visual Representations for Scalar Fields

 A scalar quantity is one that has a single value. Scalar data sets

contain values that may be distributed in time as well as over
spatial positions also the values may be functions of other scalar

parameters. Examples of physical scalar quantities are energy,
density, mass , temperature and water content.

 A common method for visualizing a scalar data set is to use graphs

or charts that show the distribution of data values as a function of

other parameters such as position and time.

 Pseudo-color methods are also used to distinguish different
values in a scalar data set, and color coding techniques can be

combined with graph and chart models. To color code a scalar data
set we choose a range of colors and map the range of data values

to the color range. Color coding a data set can be tricky because
some color combinations can lead to misinterpretations of the
data.

 Contour plots are used to display isolines (lines of constant

scalar value) for a data set distributed over a surface. The isolines
are spaced at some convenient interval to show the range and
variation of the data values over the region of space. Contouring

methods are applied to a set of data values that is distributed over
a regular grid.

A 2D contouring algorithm traces the isolines from cell to cell
within the grid by checking the four corners of grid cells to

determine which cell edges are crossed by a particular isoline.

The path of an isoline across five grid cells

18

Unit II – Computer Graphics

Sometimes isolines are plotted with spline curves but spline fitting
can lead to misinterpretation of the data sets. Example two spline
isolines could cross or curved isoline paths might not be a true

indicator of data trends since data values are known only at the cell
corners.

For 3D scalar data fields we can take cross sectional slices and
display the 2D data distributions over the slices. Visualization

packages provide a slicer routine that allows cross sections to be
taken at any angle.

Instead of looking at 2D cross sections we plot one or more
isosurfaces which are simply 3D contour plots. When two
overlapping isosurfaces are displayed the outer surface is made

transparent so that we can view the shape of both isosurfaces.

 Volume rendering which is like an X-ray picture is another
method for visualizing a 3D data set. The interior information

about a data set is projected to a display screen using the ray-
casting method. Along the ray path from each screen pixel.

Volume visualization of a regular, Cartesian data grid
using ray casting to examine interior data values

. Data values at the grid positions. are averaged so

that one value is stored for each voxel of the data space. How the
data are encoded for display depends on the application.

19

Unit II – Computer Graphics

For this volume visualization, a color-coded plot of the

distance to the maximum voxel value along each pixel ray was
displayed.

Visual representation for Vector fields

 A vector quantity V in three-dimensional space has three scalar
values

(Vx , Vy,Vz,) one for each coordinate direction, and a two-

dimensional vector has two components (Vx, Vy,). Another way to
describe a vector quantity is by giving its magnitude IV I and its
direction as a unit vector u.

As with scalars, vector quantities may be functions of
position, time, and other parameters. Some examples of physical

vector quantities are velocity, acceleration, force, electric fields,
magnetic fields, gravitational fields, and electric current.

One way to visualize a vector field is to plot each data point
as a small arrow that shows the magnitude and direction of the

vector. This method is most often used with cross-sectional slices,
since it can be difficult to see the trends in a three-dimensional
region cluttered with overlapping arrows. Magnitudes for the vector

values can be shown by varying the lengths of the arrows.

Vector values are also represented by plotting field lines or
streamlines .

Field lines are commonly used for electric , magnetic and
gravitational fields. The magnitude of the vector values is indicated

by spacing between field lines, and the direction is the tangent to
the field.

Field line representation for a vector data set

Visual Representations for Tensor Fields

A tensor quantity in three-dimensional space has nine components
and can be represented with a 3 by 3 matrix. This representation is used

for a second-order tensor, and higher-order tensors do occur in some
applications.

Some examples of physical, second-order tensors are stress and
strain in a material subjected to external forces, conductivity of an
electrical conductor, and the metric tensor, which gives the properties of

a particular coordinate space.

20

Unit II – Computer Graphics

The stress tensor in Cartesian coordinates,for example, can be
represented as

Tensor quantities are frequently encountered in anisotropic
materials, which have different properties in different directions. The x,

xy, and xz elements of the conductivity tensor, for example, describe the
contributions of electric field components in the x, y, and z diretions to
the current in the x direction.

Usually, physical tensor quantities are symmetric, so that the

tensor has only six distinct values. Visualization schemes for
representing all six components of a second-order tensor quantity are
based on devising shapes that have six parameters.

Instead of trying to visualize all six components of a tensor

quantity, we can reduce the tensor to a vector or a scalar. And by
applying tensor-contraction operations, we can obtain a scalar
representation.

Visual Representations for Multivariate Data Fields

In some applications, at each grid position over some region of

space, we may have multiple data values, which can be a mixture of
scalar, vector, and even tensor values.

A method for displaying multivariate data fields is to construct
graphical objects, sometimes referred to as glyphs, with multiple parts.

Each part of a glyph represents a physical quantity. The size and color of
each part can be used to display information about scalar magnitudes.
To give directional information for a vector field, we can use a wedge, a

cone, or some other pointing shape for the glyph part representing the

vector.

2.4 Three Dimensional Geometric and Modeling Transformations

Geometric transformations and object modeling in three

dimensions are extended from two-dimensional methods by including
considerations for the z-coordinate.

2.4.1 Translation

21

Unit II – Computer Graphics

In a three dimensional homogeneous coordinate representation, a

point or an object is translated from position P = (x,y,z) to position P’ =
(x’,y’,z’) with the matrix operation.

 x’ 1 0 0 tx x

y’ = 0 1 0 ty y

(1)

z’ 0 0 1 yz z --------

 1 0 0 0 1 1

(or) P’ = T.P ----------------(2)

Parameters tx, ty and tz specifying translation distances for the
coordinate directions x,y and z are assigned any real values.

The matrix representation in equation (1) is equivalent to the three
equations

x’ = x + tx

y’ = y + ty

z’ = z + tz -------------------------------(3)

Translating a point with translation vector T = (tx, ty, tz)

Inverse of the translation matrix in equation (1) can be obtained by
negating the translation distance tx, ty and tz.

This produces a translation in the opposite direction and the
product of a translation matrix and its inverse produces the identity

matrix.

2.4.2 Rotation

22

Unit II – Computer Graphics

 To generate a rotation transformation for an object an axis of
rotation must be designed to rotate the object and the amount of

angular rotation is also be specified.

 Positive rotation angles produce counter clockwise rotations about

a coordinate axis.

Co-ordinate Axes Rotations

The 2D z axis rotation equations are easily extended to 3D.

x’ = x cos θ – y sin θ

y’ = x sin θ + y cos θ

z’ = z --------------------------(2)

Parameters θ specifies the rotation angle. In homogeneous
coordinate form, the 3D z axis rotation equations are expressed as

x’ cosθ -sinθ 0 0 x

y’ = sinθ cosθ 0 0 y

z’ 0 0 1 0 z -------(3)

1 0 0 0 1 1

which we can write more compactly as

P’ = Rz (θ) . P ------------------(4)

The below figure illustrates rotation of an object about the z axis.

Transformation equations for rotation about the other two

coordinate axes can be obtained with a cyclic permutation of the

23

Unit II – Computer Graphics

(or) P’ = Rx (θ). P

coordinate parameters x, y and z in equation (2) i.e., we use the
replacements

x  y  z  x ---------(5)

Substituting permutations (5) in equation (2), we get the equations
for an x-axis rotation

y’ = ycosθ - zsinθ

z’ = ysinθ + zcosθ ---------------(6)

x’ = x

which can be written in the homogeneous coordinate form

x’ 1 0 0 0 x

y’ = 0 cosθ -sinθ 0 y

z’ 0 sinθ cosθ 0 z -------(7)

1 0 0 0 1 1

-----------(8)

Rotation of an object around the x-axis is demonstrated in the
below fig

Cyclically permuting coordinates in equation (6) give the
transformation equation for a y axis rotation.

z’ = zcosθ - xsinθ

x’ = zsinθ + xcosθ ---------------(9)

y’ = y

The matrix representation for y-axis rotation is

x’ cosθ 0 sinθ 0 x

24

Unit II – Computer Graphics

y’ = 0 1 0 0 y

z’ -sinθ 0 cosθ 0 z --------(10)

1 0 0 0 1 1

(or) P’ = Ry (θ). P ----------------(11)

An example of y axis rotation is shown in below figure

 An inverse rotation matrix is formed by replacing the rotation angle
θ by –θ.

 Negative values for rotation angles generate rotations in a

clockwise direction, so the identity matrix is produces when any
rotation matrix is multiplied by its inverse.

 Since only the sine function is affected by the change in sign of the

rotation angle, the inverse matrix can also be obtained by
interchanging rows and columns. (i.e.,) we can calculate the

inverse of any rotation matrix R by evaluating its transpose
(R-1 = RT).

General Three Dimensional Rotations

 A rotation matrix for any axis that does not coincide with a

coordinate axis can be set up as a composite transformation
involving combinations of translations and the coordinate axes

rotations.

 We obtain the required composite matrix by

1. Setting up the transformation sequence that moves the
selected rotation axis onto one of the coordinate axis.

2. Then set up the rotation matrix about that coordinate axis
for the specified rotation angle.

25

Unit II – Computer Graphics

3. Obtaining the inverse transformation sequence that returns
the rotation axis to its original position.

 In the special case where an object is to be rotated about an axis

that is parallel to one of the coordinate axes, we can attain the
desired rotation with the following transformation sequence:

1. Translate the object so that the rotation axis coincides with
the parallel coordinate axis.

2. Perform the specified rotation about the axis.

3. Translate the object so that the rotation axis is moved back
to its original position.

 When an object is to be rotated about an axis that is not parallel to

one of the coordinate axes, we need to perform some additional
transformations.

 In such case, we need rotations to align the axis with a selected

coordinate axis and to bring the axis back to its original orientation.

 Given the specifications for the rotation axis and the rotation angle,

we can accomplish the required rotation in five steps:

1. Translate the object so that the rotation axis passes through

the coordinate origin.

2. Rotate the object so that the axis of rotation coincides with
one of the coordinate axes.

3. Perform the specified rotation about that coordinate axis.

4. Apply inverse rotations to bring the rotation axis back to its
original orientation.

5. Apply the inverse translation to bring the rotation axis back
to its original position.

Five transformation steps

26

Unit II – Computer Graphics

2.4.3 Scaling

 The matrix expression for the scaling transformation of a position
P = (x,y,.z) relative to the coordinate origin can be written as

x’ sx 0 0 0 x

y’ = 0 sy 0 0 y

z’ 0 0 sz 0 z --------(11)

1 0 0 0 1 1

(or) P’ = S.P ---------(12)

where scaling parameters sx , sy, and sz are assigned any position values.

 Explicit expressions for the coordinate transformations for scaling

relative to the origin are

x’ = x.sx

y’ = y.sy ----------(13)

z’ = z.sz

 Scaling an object changes the size of the object and repositions the

object relatives to the coordinate origin.

 If the transformation parameters are not equal, relative dimensions

in the object are changed.

 The original shape of the object is preserved with a uniform scaling

(sx = sy= sz) .

 Scaling with respect to a selected fixed position (x f, yf, zf) can be

represented with the following transformation sequence:

1. Translate the fixed point to the origin.

2. Scale the object relative to the coordinate origin using Eq.11.

27

Unit II – Computer Graphics

3. Translate the fixed point back to its original position. This
sequence of transformation is shown in the below figure .

 The matrix representation for an arbitrary fixed point scaling can

be expressed as the concatenation of the translate-scale-translate
transformation are

T (xf, yf, zf) . S(sx, sy, sz). T(-xf,-yf, -zf) =

sx 0 0 (1-sx)xf

0 sy 0 (1-sy)yf -------------(14)

0 0 sz (1-sz)zf

0 0 0 1

 Inverse scaling matrix m formed by replacing the scaling

parameters sx, sy and sz with their reciprocals.

 The inverse matrix generates an opposite scaling transformation,
so the concatenation of any scaling matrix and its inverse

produces the identity matrix.

2.4.4 Other Transformations

Reflections

 A 3D reflection can be performed relative to a selected reflection
axis or with respect to a selected reflection plane.

 Reflection relative to a given axis are equivalent to 1800 rotations

about the axis.

28

Unit II – Computer Graphics

 Reflection relative to a plane are equivalent to 1800 rotations in 4D
space.

 When the reflection plane in a coordinate plane (either xy, xz or yz)

then the transformation can be a conversion between left-handed
and right-handed systems.

 An example of a reflection that converts coordinate specifications

from a right handed system to a left-handed system is shown in
the figure

 This transformation changes the sign of z coordinates, leaves the x
and y coordinate values unchanged.

 The matrix representation for this reflection of points relative to the

xy plane is

 1 0 0 0

RFz = 0 1 0 0

 0 0 -1 0

 0 0 0 1

 Reflections about other planes can be obtained as a combination

of rotations and coordinate plane reflections.

Shears

 Shearing transformations are used to modify object shapes.

 They are also used in three dimensional viewing for obtaining

general projections transformations.

 The following transformation produces a z-axis shear.

1 0 a 0

SHz = 0 1 b 0

0 0 1 0

0 0 0 1

Parameters a and b can be assigned any real values.

29

Unit II – Computer Graphics

This transformation matrix is used to alter x and y coordinate

values by an amount that is proportional to the z value, and the z
coordinate will be unchanged.

 Boundaries of planes that are perpendicular to the z axis are
shifted by an amount proportional to z the figure shows the effect

of shearing matrix on a unit cube for the values a = b = 1.

2.4.5 Composite Transformation

 Composite three dimensional transformations can be formed by
multiplying the matrix representation for the individual operations

in the transformation sequence.

 This concatenation is carried out from right to left, where the right
most matrixes is the first transformation to be applied to an object

and the left most matrix is the last transformation.

 A sequence of basic, three-dimensional geometric transformations

is combined to produce a single composite transformation which
can be applied to the coordinate definition of an object.

2.4.6Three Dimensional Transformation Functions

Some of the basic 3D transformation functions are:

translate (translateVector, matrixTranslate)

rotateX(thetaX, xMatrixRotate)

rotateY(thetaY, yMatrixRotate)

rotateZ(thetaZ, zMatrixRotate)

scale3 (scaleVector, matrixScale)

 Each of these functions produces a 4 by 4 transformation matrix

that can be used to transform coordinate positions expressed as
homogeneous column vectors.

 Parameter translate Vector is a pointer to list of translation
distances tx, ty, and tz.

30

Unit II – Computer Graphics

Parameter scale vector specifies the three scaling parameters sx, sy

and sz.

 Rotate and scale matrices transform objects with respect to the
coordinate origin.

 Composite transformation can be constructed with the following
functions:

composeMatrix3

buildTransformationMatrix3

composeTransformationMatrix3

 The order of the transformation sequence for the

buildTransformationMarix3 and composeTransfomationMarix3
functions, is the same as in 2 dimensions:

1. scale

2. rotate

3. translate

 Once a transformation matrix is specified, the matrix can be
applied to specified points with

transformPoint3 (inPoint, matrix, outpoint)

 The transformations for hierarchical construction can be set using
structures with the function

setLocalTransformation3 (matrix, type)

where parameter matrix specifies the elements of a 4 by 4

transformation matrix and parameter type can be assigned one of the
values of:

Preconcatenate,

Postconcatenate, or replace.

2.4.7 Modeling and Coordinate Transformations

 In modeling, objects are described in a local (modeling) coordinate

reference frame, then the objects are repositioned into a world
coordinate scene.

 For instance, tables, chairs and other furniture, each defined in a

local coordinate system, can be placed into the description of a
room defined in another reference frame, by transforming the

furniture coordinates to room coordinates. Then the room might be
transformed into a larger scene constructed in world coordinate.

 Three dimensional objects and scenes are constructed using

structure operations.

 Object description is transformed from modeling coordinate to

world coordinate or to another system in the hierarchy.

31

Unit II – Computer Graphics

 Coordinate descriptions of objects are transferred from one system

to another system with the same procedures used to obtain two
dimensional coordinate transformations.

 Transformation matrix has to be set up to bring the two coordinate

systems into alignment:

- First, a translation is set up to bring the new coordinate

origin to the position of the other coordinate origin.

- Then a sequence of rotations are made to the corresponding
coordinate axes.

- If different scales are used in the two coordinate systems, a

scaling transformation may also be necessary to compensate

for the differences in coordinate intervals.

 If a second coordinate system is defined with origin (x0, y0,z0) and

axis vectors as shown in the figure relative to an existing

Cartesian reference frame, then first construct the translation

matrix T(-x0, -y0, -z0), then we can use the unit axis vectors to form
the coordinate rotation matrix

u’x1 u’x2 u’x3 0

R = u’y1 u’y2 u’y3 0

u’z1 u’z2 u’z3 0

0 0 0 1

which transforms unit vectors u’x, u’y and u’z onto the x, y and z
axes respectively.

Transformation of an object description from one
coordinate system to another.

 The complete coordinate-transformation sequence is given by the

composite matrix R .T.

 This matrix correctly transforms coordinate descriptions from one

Cartesian system to another even if one system is left-handed and
the other is right handed.

32

Unit II – Computer Graphics

rdinates

ordinates

2.5Three-Dimensional Viewing

In three dimensional graphics applications,

- we can view an object from any spatial position, from the
front, from above or from the back.

- We could generate a view of what we could see if we were

standing in the middle of a group of objects or inside object,
such as a building.

2.5.1Viewing Pipeline:

In the view of a three dimensional scene, to take a snapshot we

need to do the following steps.

1. Positioning the camera at a particular point in space.

2. Deciding the camera orientation (i.e.,) pointing the
camera and rotating it around the line of right to set up

the direction for the picture.

3. When snap the shutter, the scene is cropped to the size of
the ‘window’ of the camera and light from the visible
surfaces is projected into the camera film.

In such a way the below figure shows the three dimensional
transformation pipeline, from modeling coordinates to final device
coordinate.

Modeling World

Viewing Viewing

Co-ordinates
ordinates

Modeling

transformation

Co-o transformation

Co-

Projection Device.

Projection

Transformation

Co-ordinates

Work Station

Transformation

co-

Processing Steps

1. Once the scene has been modeled, world coordinates position is
converted to viewing coordinates.

2. The viewing coordinates system is used in graphics packages as
a reference for specifying the observer viewing position and the
position of the projection plane.

3. Projection operations are performed to convert the viewing

coordinate description of the scene to coordinate positions on
the projection plane, which will then be mapped to the output
device.

33

Unit II – Computer Graphics

4. Objects outside the viewing limits are clipped from further

consideration, and the remaining objects are processed through
visible surface identification and surface rendering procedures
to produce the display within the device viewport.

2.5.2Viewing Coordinates

Specifying the view plane

 The view for a scene is chosen by establishing the viewing

coordinate system, also called the view reference coordinate
system.

 A viewplane or projection plane is set-up perpendicular to the

viewing Zv axis.

 World coordinate positions in the scene are transformed to viewing

coordinates, then viewing coordinates are projected to the view
plane.

 The view reference point is a world coordinate position, which is

the origin of the viewing coordinate system. It is chosen to be close
to or on the surface of some object in a scene.

 Then we select the positive direction for the viewing Zv axis, and

the orientation of the view plane by specifying the view plane
normal vector, N. Here the world coordinate position establishes
the direction for N relative either to the world origin or to the

viewing coordinate origin.

 Then we select the up direction for the view by specifying a vector

V called the view-up vector. This vector is used to establish the

positive direction for the yv axis.

34

Unit II – Computer Graphics

Specifying the view –up vector with a twist angle θt

Transformation from world to viewing coordinates

 Before object descriptions can be projected to the view plane, they
must be transferred to viewing coordinate. This transformation

sequence is,

1. Translate the view reference point to the origin of the
world coordinate system.

2. Apply rotations to align the xv, yv and zv axes with the
world xw,yw and zw axes respectively.

 If the view reference point is specified at world position(x0,y0,z0)
this point is translated to the world origin with the matrix

transformation.

 1 0 0 -x0

T = 0 1 0 -y0

 0 0 1 -z0

 0 0 0 1

 The rotation sequence can require up to 3 coordinate axis rotations

depending on the direction chosen for N. Aligning a viewing system

with the world coordinate axes using a sequence of translate –
rotate transformations

 Another method for generation the rotation transformation matrix

is to calculate unit uvn vectors and form the composite rotation
matrix directly.

Given vectors N and V, these unit vectors are calculated as

n = N / (|N|) = (n1, n2, n3)

35

Unit II – Computer Graphics

u = (V*N) / (|V*N|) = (u1, u2, u3)

v = n*u = (v1, v2, v3)

 This method automatically adjusts the direction for v, so that v is
perpendicular to n.

 The composite rotation matrix for the viewing transformation is

u1 u2 u3 0

R = v1 v2 v3 0

n1 n2 n3 0

0 0 0 1

which transforms u into the world xw axis, v onto the yw axis and n
onto the zw axis.

 The complete world-to-viewing transformation matrix is obtained
as the matrix product. Mwc, vc = R.T

This transformation is applied to coordinate descriptions of objects
in the scene transfer them to the viewing reference frame.

2.5 Projections

 Once world coordinate descriptions of the objects are converted to

viewing coordinates, we can project the 3 dimensional objects onto
the two dimensional view planes.

 There are two basic types of projection.

1. Parallel Projection - Here the coordinate positions are
transformed to the view plane along parallel lines.

Parallel projection of an object to the view plane

2. Perspective Projection – Here, object positions are

transformed to the view plane along lines that converge to
a point called the projection reference point.

36

Unit II – Computer Graphics

Perspective projection of an object to the view
plane

Parallel Projections

 Parallel projections are specified with a projection vector that
defines the direction for the projection lines.

 When the projection in perpendicular to the view plane, it is said to

be an Orthographic parallel projection, otherwise it said to be an
Oblique parallel projection.

Orientation of the projection vector Vp to produce an
orthographic projection (a) and an oblique projection (b)

Orthographic Projection

 Orthographic projections are used to produce the front, side and
top views of an object.

 Front, side and rear orthographic projections of an object are
called elevations.

 A top orthographic projection is called a plan view.

 This projection gives the measurement of lengths and angles
accurately.

Unit II – Computer Graphics

37

Orthographic projections of an object, displaying plan
and elevation views

 The orthographic projection that displays more than one face of an

object is called axonometric orthographic projections.

 The most commonly used axonometric projection is the isometric

projection.

 It can be generated by aligning the projection plane so that it

intersects each coordinate axis in which the object is defined as
the same distance from the origin.

Isometric projection for a cube

 Transformation equations for an orthographic parallel projection
are straight forward.

Unit II – Computer Graphics

38

 If the view plane is placed at position zvp along the zv axis then any

point (x,y,z) in viewing coordinates is transformed to projection

coordinates as

xp = x, yp = y

where the original z coordinates value is kept for the depth
information needed in depth cueing and visible surface determination
procedures.

Oblique Projection

 An oblique projection in obtained by projecting points along

parallel lines that are not perpendicular to the projection plane.

 The below figure α and φ are two angles.

 Point (x,y,z) is projected to position (xp,yp) on the view plane.

 The oblique projection line form (x,y,z) to (xp,yp) makes an angle α
with the line on the projection plane that joins (xp,yp) and (x,y).

 This line of length L in at an angle φ with the horizontal direction

in the projection plane.

 The projection coordinates are expressed in terms of x,y, L and φ
as

xp = x + Lcosφ - - - -(1)

yp = y + Lsinφ

 Length L depends on the angle α and the z coordinate of the point

to be projected:

thus,

tanα = z / L

L = z / tanα

= z L1

where L1 is the inverse of tanα, which is also the value of L when z = 1.

39

Unit II – Computer Graphics

 The oblique projection equation (1) can be written as

xp = x + z(L1cosφ)

yp = y + z(L1sinφ)

 The transformation matrix for producing any parallel projection

onto the xvyv plane is

1 0 L1cosφ 0

Mparallel = 0 1 L1sinφ 0

0 0 1 0

0 0 0 1

 An orthographic projection is obtained when L1 = 0 (which occurs
at a projection angle α of 900)

 Oblique projections are generated with non zero values for L1.

Perspective Projections

 To obtain perspective projection of a 3D object, we transform

points along projection lines that meet at the projection reference
point.

 If the projection reference point is set at position zprp along the zv

axis and the view plane is placed at zvp as in fig , we can write
equations describing coordinate positions along this perspective

projection line in parametric form as

x’ = x - xu

y’ = y - yu

z’ = z – (z – zprp) u

Perspective projection of a point P with coordinates (x,y,z). to

position (xp, yp,zvp) on the view plane.

 Parameter u takes values from 0 to 1 and coordinate position (x’, y’,z’)
represents any point along the projection line.

40

Unit II – Computer Graphics

 When u = 0, the point is at P = (x,y,z).

 At the other end of the line, u = 1 and the projection reference point

coordinates (0,0,zprp)

 On the view plane z` = zvp and z` can be solved for parameter u at this

position along the projection line:

 Substituting this value of u into the equations for x` and y`, we obtain

the perspective transformation equations.

xp = x((zprp – zvp) / (zprp – z)) = x(dp/(zprp – z))

yp = y((zprp - zvp) / (zprp – z)) = y(dp / (zprp – z)) --------------(2)

where dp = zprp – zvp is the distance of the view plane from the
projection reference point.

 Using a 3D homogeneous coordinate representation we can write the
perspective projection transformation (2) in matrix form as

xh
 1 0 0 0 x

yh = 0 1 0 0 y

zh
 0 0 -(zvp/dp) zvp(zprp/dp) z --------(3)

h 0 0 -1/dp zprp/dp 1

 In this representation, the homogeneous factor is

h = (zprp-z)/dp --------------(4)

and the projection coordinates on the view plane are calculated
from eq (2)the homogeneous coordinates as

xp = xh / h

yp = yh / h ---------------------(5)

where the original z coordinate value retains in projection

coordinates for depth processing.

2.6 CLIPPING

 An algorithm for three-dimensional clipping identifies and saves all
surface segments within the view volume for display on the output

device. All parts of objects that are outside the view volume are
discarded.

 Instead of clipping against straight-line window boundaries, we
now clip objects against the boundary planes of the view volume.

 To clip a line segment against the view volume, we would need to

test the relative position of the line using the view volume's
boundary plane equations. By substituting the line endpoint
coordinates into the plane equation of each boundary in turn, we

41

Unit II – Computer Graphics

could determine whether the endpoint is inside or outside that
boundary.

 An endpoint (x, y, z) of a line segment is outside a boundary plane
if Ax + By + Cz + D > 0, where A, B , C, and D are the plane

parameters for that boundary.

 Similarly, the point is inside the boundary if Ax + By + Cz +D < 0.

Lines with both endpoints outside a boundary plane are discarded,
and those with both endpoints inside all boundary planes are
saved.

 The intersection of a line with a boundary is found using the line
equations along with the plane equation.

 Intersection coordinates (x1, y1, z1) are values that are on the line

and that satisfy the plane equation Ax1, + By1 + Cz1 + D = 0.

 To clip a polygon surface, we can clip the individual polygon edges.
First, we could test the coordinate extents against each boundary
of the view volume to determine whether the object is completely

inside or completely outside that boundary. If the coordinate

extents of the object are inside all boundaries, we save it. If the
coordinate extents are outside all boundaries, we discard it. Other-
wise, we need to apply the intersection calculations.

Viewport Clipping

 Lines and polygon surfaces in a scene can be clipped against the

viewport boundaries with procedures similar to those used for two
dimensions, except that objects are now processed against clipping
planes instead of clipping edges.

 The two-dimensional concept of region codes can be extended to

three dimensions by considering positions in front and in back of
the three-dimensional viewport, as well as positions that are left,

right, below, or above the volume. For three dimensionalpoints, we
need to expand the region code to six bits. Each point in the
description of a scene is then assigned a six-bit region code that

identifies the relative position of the point with respect to the
viewport.

 For a line endpoint at position (x, y, z), we assign the bit positions

in the region code from right to left as

bit 1 = 1, if x < xvmin(left)

bit 2 = 1, if x > xvmax(right)

bit 3 = 1, if y < yvmin(below)

bit 4 = 1, if y > yvmax(above)

bit 5 = 1, if z <zvmin(front)

bit 6 = 1, if z > zvmax(back)

42

Unit II – Computer Graphics

 For example, a region code of 101000 identifies a point as above

and behind the viewport, and the region code 000000 indicates a
point within the volume.

 A line segment can immediately identified as completely within the

viewport if both endpoints have a region code of 000000. If either
endpoint of a line segment does not have a region code of 000000,
we perform the logical and operation on the two endpoint codes.
The result of this and operation will be nonzero for any line
segment that has both endpoints in one of the six outside regions.

 As in two-dimensional line clipping, we use the calculated

intersection of a line with a viewport plane to determine how much
of the line can be thrown away.

 The two-dimensional parametric clipping methods of Cyrus-Beck
or Liang-Barsky can be extended to three-dimensional scenes. For

a line segment with endpoints P1 = (x1, y1, z1,) and P2 = (x2, y2,

z2), we can write the parametric line equations as

x = x1 + (x2 - x1)u 0<=u <=1

y = y1 + (y2 - y1)u

z= z1 + (z2 - z1)u -------------(1)

 Coordinates (x, y, z) represent any point on the line between the
two endpoints.

 At u = 0, we have the point PI, and u = 1 puts us at P2.

 To find the intersection of a line with a plane of the viewport, we

substitute the coordinate value for that plane into the appropriate
parametric expression of Eq.1 and solve for u. For instance,

suppose we are testing a line against the zvmin, plane of the
viewport. Then

u= zvmin – z1

z2 – z1 ---------------------------- (2)

 When the calculated value for u is not in the range from 0 to 1,

the line segment does not intersect the plane under consideration
at any point between endpoints P1 and P2 (line A in fig).

 If the calculated value for u in Eq.2 is in the interval from 0 to

1, we calculate the intersection's x and y coordinates as

x1 = x1 + (x2 – x1) zvmin – z1

z2 – z1

43

Unit II – Computer Graphics

y1 = y1 + (y2 – y1) zvmin – z1

z2 – z1

 If either x1 or y1 is not in the range of the boundaries of the

viewport, then this line intersects the front plane beyond the
boundaries of the volume (line B in Fig.)

2.7 Three Dimensional Viewing Functions

1. With parameters specified in world coordinates, elements of the

matrix for transforming world coordinate descriptions to the
viewing reference frame are calculated using the function.

EvaluateViewOrientationMatrix3(x0,y0,z0,xN,yN,zN,xV,yV,zV,error,vi
ewMatrix)

- This function creates the viewMatrix from input coordinates

defining the viewing system.

- Parameters x0,y0,z0 specify the sign of the viewing system.

- World coordinate vector (xN, yN, zN) defines the normal to

the view plane and the direction of the positive zv viewing
axis.

- The world coordinates (xV, yV, zV) gives the elements of the

view up vector.

- An integer error code is generated in parameter error if input

values are not specified correctly.

2. The matrix proj matrix for transforming viewing coordinates to
normalized projection coordinates is created with the function.

EvaluateViewMappingMatrix3

(xwmin,xwmax,ywmin,ywmax,xvmin,xvmax,yvmin,yvmax,zvmin,zv
max,

projType,xprojRef,yprojRef,zprojRef,zview,zback,zfront,error,projMa
trix)

44

Unit II – Computer Graphics

- Window limits on the view plane are given in viewing

coordinates with parameters xwmin, xwmax, ywmin and
ywmax.

- Limits of the 3D view port within the unit cube are set with

normalized coordinates xvmin, xvmax, yvmin, yvmax, zvmin

and zvmax.

- Parameter projType is used to choose the projection type

either parallel or perspective.

- Coordinate position (xprojRef, yprojRdf, zprojRef) sets the

projection reference point. This point is used as the center of
projection if projType is set to perspective; otherwise, this

point and the center of the viewplane window define the
parallel projection vector.

- The position of the viewplane along the viewing zv axis is set
with parameter z view.

- Positions along the viewing zv axis for the front and back

planes of the view volume are given with parameters z front

and z back.

- The error parameter returns an integer error code indicating
erroneous input data.

2.8VISIBLE SURFACE IDENTIFICATION

A major consideration in the generation of realistic

graphics displays is identifying those parts of a scene that are
visible from a chosen viewing position.

2.8.1 Classification of Visible Surface Detection Algorithms

These are classified into two types based on whether
they deal with object definitions directly or with their
projected images

1. Object space methods: compares objects and parts of objects
to each other within the scene definition to determine which
surfaces as a whole we should label as visible.

2. Image space methods: visibility is decided point by point at each
pixel position on the projection plane. Most Visible Surface
Detection Algorithms use image space methods.

2.8.2 Back Face Detection

A point (x, y,z) is "inside" a polygon surface with plane
parameters A, B, C, and D if

Ax + By + Cz + D < 0 ----------------(1)

When an inside point is along the line of sight to the surface,
the polygon must be a back face .

45

Unit II – Computer Graphics

We can simplify this test by considering the normal vector N
to a polygon surface, which has Cartesian components (A, B, C). In
general, if V is a vector in the viewing direction from the eye

position, as shown in Fig.,

then this polygon is a back face if V . N > 0

Furthermore, if object descriptions have been converted to
projection coordinates and our viewing direction is parallel to the

viewing zv. axis, then V = (0, 0, Vz) and V . N = VzC so that we only need
to consider the sign of C, the ; component of the normal vector N.

In a right-handed viewing system with viewing direction along the

negative zv axis in the below Fig. the polygon is a back face if C < 0.

Thus, in general, we can label any polygon as a back face if its normal
vector has a z component value

C<= 0

By examining parameter C for the different planes defining an
object, we can immediately identify all the back faces.

2.8.3 Depth Buffer Method

A commonly used image-space approach to detecting visible

surfaces is the depth-buffer method, which compares surface depths at
each pixel position on the projection plane. This procedure is also

referred to as the z-buffer method.

Each surface of a scene is processed separately, one point at a

46

Unit II – Computer Graphics

time across the surface. The method is usually applied to scenes
containing only polygon surfaces, because depth values can be computed
very quickly and the method is easy to implement. But the mcthod can
be applied to nonplanar surfaces.

With object descriptions converted to projection coordinates, each
(x, y, z) position on a polygon surface corresponds to the orthographic

projection point (x, y) on the view plane.

Therefore, for each pixel position (x, y) on the view plane, object
depths can be compared by comparing z values. The figure shows

three surfaces at varying distances along the orthographic projection line

from position (x,y) in a view plane taken as the (xv,yv) plane. Surface S1,
is closest at this position, so its surface intensity value at (x, y) is saved.

We can implement the depth-buffer algorithm in normalized

coordinates, so that z values range from 0 at the back clipping plane to

Zmax at the front clipping plane.

Two buffer areas are required.A depth buffer is used to store depth
values for each (x, y) position as surfaces are processed, and the refresh
buffer stores the intensity values for each position.

Initially,all positions in the depth buffer are set to 0 (minimum
depth), and the refresh buffer is initialized to the background intensity.

We summarize the steps of a depth-buffer algorithm as follows:

1. Initialize the depth buffer and refresh buffer so that for all buffer

positions (x, y),

depth (x, y)=0, refresh(x , y)=Ibackgnd

2. For each position on each polygon surface, compare depth values to

previously stored values in the depth buffer to determine visibility.

47

Unit II – Computer Graphics

B A

B

z

 Calculate the depth z for each (x, y) position on the polygon.

 If z > depth(x, y), then set

depth (x, y)=z , refresh(x,y)= Isurf(x, y)

where Ibackgnd is the value for the background intensity, and Isurf(x, y)

is the projected intensity value for the surface at pixel position (x,y).

After all surfaces have been processed, the depth buffer contains

depth values for the visible surfaces and the refresh buffer contains

the corresponding intensity values for those surfaces.

Depth values for a surface position (x, y) are calculated from the
plane equation for each surface:

z
x y D

C

-----------------------------(1)

For any scan line adjacent horizontal positions across the line
differ by1, and a vertical y value on an adjacent scan line differs by 1. If

the depth of position(x, y) has been determined to be z, then the depth z'
of the next position (x +1, y) along the scan line is obtained from Eq. (1)

as

z'

Or z'

A(x 1) y D

C

A

C

-----------------------(2)

-----------------------(3)

On each scan line, we start by calculating the depth on a left edge
of the polygon that intersects that scan line in the below fig. Depth

values at each successive position across the scan line are then
calculated by Eq. (3).

Scan lines intersecting a polygon surface

48

Unit II – Computer Graphics

z

z

We first determine the y-coordinate extents of each polygon, and
process the surface from the topmost scan line to the bottom scan line.
Starting at a top vertex, we can recursively calculate x positions down a

left edge of the polygon as x' = x - l/m, where m is the slope of the edge.

Depth values down the edge are then obtained recursively as

z'
 A / m B C

----------------------(4)

Intersection positions on successive scan lines along a left polygon edge

If we are processing down a vertical edge, the slope is infinite and
the recursive calculations reduce to

z'
 B

C

-----------------------(5)

An alternate approach is to use a midpoint method or Bresenham-
type algorithm for determining x values on left edges for each scan line.
Also the method can be applied to curved surfaces by determining depth

and intensity values at each surface projection point.

For polygon surfaces, the depth-buffer method is very easy to

implement, and it requires no sorting of the surfaces in a scene. But it
does require the availability of a second buffer in addition to the refresh

buffer.

2.8.4 A- BUFFER METHOD

An extension of the ideas in the depth-buffer method is the A-

buffer method. The A buffer method represents an antialiased, area-
averaged, accumulation-buffer method developed by Lucasfilm for
implementation in the surface-rendering system called REYES (an

acronym for "Renders Everything You Ever Saw").

49

Unit II – Computer Graphics

A drawback of the depth-buffer method is that it can only find one
visible surface at each pixel position. The A-buffer method expands

the depth buffer so that each position in the buffer can reference a linked

list of surfaces.

Thus, more than one surface intensity can be taken into
consideration at each pixel position, and object edges can be antialiased.

Each position in the A-buffer has two fields:

1)depth field - stores a positive or negative real number

2)intensity field - stores surface-intensity information or a pointer
value.

If the depth field is positive, the number stored at that position is

the depth of a single surface overlapping the corresponding pixel area.
The intensity field then stores the RCB components of the surface color
at that point and the percent of pixel coverage, as illustrated in Fig.A

If the depth field is negative, this indicates multiple-surface
contributions to the pixel intensity. The intensity field then stores a
pointer to a linked Iist of surface data, as in Fig. B.

Organization of an A-buffer pixel position (A) single surface
overlap of the corresponding pixel area (B) multiple surface

overlap

Data for each surface in the linked list includes

 RGB intensity components

 opacity parameter (percent of transparency)

 depth

 percent of area coverage

 surface identifier

 other surface-rendering parameters

 pointer to next surface

.

50

Unit II – Computer Graphics

2.8.5 SCAN-LINE METHOD

This image-space method for removing hidden surfaces is an

extension of the scan-line algorithm for filling polygon interiors. As each
scan line is processed, all polygon surfaces intersecting that line are
examined to determine which are visible. Across each scan line, depth

calculations are made for each overlapping surface to determine which is
nearest to the view plane. When the visible surface has been determined,

the intensity value for that position is entered into the refresh buffer.

We assume that tables are set up for the various surfaces, which include
both an edge table and a polygon table. The edge table contains
coordinate endpoints for each line in-the scene, the inverse slope of each

line, and pointers into the polygon table to identify the surfaces bounded
by each line.

The polygon table contains coefficients of the plane equation for
each surface, intensity information for the surfaces, and possibly

pointers into the edge table.

To facilitate the search for surfaces crossing a given scan line, we

can set up an active list of edges from information in the edge table. This
active list will contain only edges that cross the current scan line, sorted

in order of increasing x.

In addition, we define a flag for each surface that is set on or off to
indicate whether a position along a scan line is inside or outside of the
surface. Scan lines are processed from left to right. At the leftmost

boundary of a surface, the surface flag is turned on; and at the rightmost
boundary, it is turned off.

Scan lines crossing the projection of two surfaces S1 and S2 in the
view plane. Dashed lines indicate the boundaries of hidden

surfaces

The figure illustrates the scan-line method for locating visible
portions of surfaces for pixel positions along the line.

51

Unit II – Computer Graphics

The active list for scan line 1 contains information from the edge
table for edges AB, BC, EH, and FG. For positions along this scan line

between edges AB and BC, only the flag for surface S1 is on.

Therefore no depth calculations are necessary, and intensity

information for surface S1, is entered from the polygon table into the
refresh buffer.

Similarly, between edges EH and FG, only the flag for surface S2 is
on. No other positions along scan line 1 intersect surfaces, so the

intensity values in the other areas are set to the background intensity.

For scan lines 2 and 3 , the active edge list contains edges AD,

EH, BC, and FG. Along scan line 2 from edge AD to edge EH, only the
flag for surface S1, is on. But between edges EH and BC, the flags for
both surfaces are on.

In this interval, depth calculations must be made using the plane
coefficients for the two surfaces. For this example, the depth of surface

S1 is assumed to be less than that of S2, so intensities for surface S1, are
loaded into the refresh buffer until boundary BC is encountered. Then

the flag for surface S1 goes off, and intensities for surface S2 are stored
until edge FG is passed.

Any number of overlapping polygon surfaces can be processed with
this scan-line method. Flags for the surfaces are set to indicate whether
a position is inside or outside, and depth calculations are performed
when surfaces overlap.

2.8.6 Depth Sorting Method

Using both image-space and object-space operations, the depth-
sorting method performs the following basic functions:

1. Surfaces are sorted in order of decreasing depth.

2. Surfaces are scan converted in order, starting with the surface of

greatest depth.

Sorting operations are carried out in both image and object space,
and the scan conversion of the polygon surfaces is performed in image

space.

This method for solving the hidden-surface problem is often
referred to as the painter's algorithm. In creating an oil painting, an
artist first paints the background colors. Next, the most distant objects

are added, then the nearer objects, and so forth. At the final step, the
foreground objects are painted on the canvas over the background and
other objects that have been painted on the canvas. Each layer of paint

covers up the previous layer.

Using a similar technique, we first sort surfaces according to their
distance from the view plane. The intensity values for the farthest surface
are then entered into the refresh buffer. Taking each succeeding surface

52

Unit II – Computer Graphics

in turn we "paint" the surface intensities onto the frame buffer over the
intensities of the previously processed surfaces.

Painting polygon surfaces onto the frame buffer according to depth
is carried out in several steps. Assuming we are viewing along the-z
direction,

1.surfaces are ordered on the first pass according to the smallest z
value on each surface.

2.Surfaces with the greatest depth is then compared to the other

surfaces in the list to determine whether there are any overlaps in depth.
If no depth overlaps occur, S is scan converted. Figure shows two

surfaces that overlap in the xy plane but have no depth overlap.

3.This process is then repeated for the next surface in the list. As
long as no overlaps occur, each surface is processed in depth order until

all have been scan converted.

4. If a depth overlap is detected at any point in the list, we need to

make some additional comparisons to determine whether any of the
surfaces should be reordered.Two surfaces with no depth overlap

We make the following tests for each surface that overlaps with S. If
any one of these tests is true, no reordering is necessary for that surface.

The tests are listed in order of increasing difficulty.

1. The bounding rectangles in the xy plane for the two surfaces do not
overlap

2. Surface S is completely behind the overlapping surface relative to the
viewing position.

3. The overlapping surface is completelv in front of S relative to the
viewing position.

4. The projections of the two surfaces onto the view plane do not overlap.

Test 1 is performed in two parts. We first check for overlap in the x
direction,then we check for overlap in the y direction. If either of these

directions show no overlap, the two planes cannot obscure one other. An

53

Unit II – Computer Graphics

example of two surfaces that overlap in the z direction but not in the x
direction is shown in Fig.

We can perform tests 2 and 3 with an "inside-outside" polygon test.
That is,we substitute the coordinates for all vertices of S into the plane

equation for the overlapping surface and check the sign of the result. If
the plane equations are setup so that the outside of the surface is toward
the viewing position, then S is behind S' if all vertices of S are "inside" S'

Surface S is completely behind (inside) the overlapping surface S’

Similarly, S' is completely in front of S if all vertices of S are
"outside" of S'. Figure shows an overlapping surface S' that is completely
in front of S, but surface S is not completely inside S’.

54

Unit II – Computer Graphics

Overlapping surface S’ is completely in front(outside) of
surface S but s is not completely behind S’

If tests 1 through 3 have all failed, we try test 4 by checking for

intersections between the bounding edges of the two surfaces using line
equations in the xy plane. As demonstrated in Fig., two surfaces may or

may not intersect even though their coordinate extents overlap in the x,
y, and z directions.

Should all four tests fail with a particular overlapping surface S', we
interchange surfaces S and S' in the sorted list.

Two surfaces with overlapping bounding rectangles in the xy
plane

2.8.7 BSP-Tree Method

A binary space-partitioning (BSP) tree is an efficient method for

determining object visibility by painting surfaces onto the screen from
back to front, as in the painter's algorithm. The BSP tree is particularly

55

Unit II – Computer Graphics

useful when the view reference point changes, but the objects in a scene
are at fixed positions.

Applying a BSP tree to visibility testing involves identifying

surfaces that are "inside" and "outside" the partitioning plane at each
step of the space subdivision, relative to the viewing direction. The
figure(a) illustrates the basic concept in this algorithm.

A region of space (a) is partitioned with two planes P1 and P2 to form the

BSP tree representation in (b)

With plane P1,we first partition the space into two sets of objects.

One set of objects is behind, or in back of, plane P1, relative to the

viewing direction, and the other set is in front of P1. Since one object is

intersected by plane P1, we divide that object into two separate objects,
labeled A and B.

Objects A and C are in front of P1 and objects B and D are behind

P1. We next partition the space again with plane P2 and construct the
binary tree representation shown in Fig.(b).

In this tree, the objects are represented as terminal nodes, with
front objects as left branches and back objects as right branches.

2.8.8 Area – Subdivision Method

This technique for hidden-surface removal is essentially an image-
space method ,but object-space operations can be used to accomplish
depth ordering of surfaces.

The area-subdivision method takes advantage of area coherence in
a scene by locating those view areas that represent part of a single
surface. We apply this method by successively dividing the total viewing

56

Unit II – Computer Graphics

area into smaller and smaller rectangles until each small area is the
projection of part of a single visible surface or no surface at all.

To implement this method, we need to establish tests that can

quickly identify the area as part of a single surface or tell us that the
area is too complex to analyze easily. Starting with the total view, we
apply the tests to determine whether we should subdivide the total area

into smaller rectangles. If the tests indicate that the view is sufficiently
complex, we subdivide it. Next. we apply the tests to each of the smaller
areas, subdividing these if the tests indicate that visibility of a single
surface is still uncertain. We continue this process until the subdivisions

are easily analyzed as belonging to a single surface or until they are

reduced to the size of a single pixel. An easy way to do this is to
successively divide the area into four equal parts at each step.

Tests to determine the visibility of a single surface within a

specified area are made by comparing surfaces to the boundary of the
area. There are four possible relationships that a surface can have with a
specified area boundary. We can describe these relative surface

characteristics in the following way (Fig.):

 Surrounding surface-One that completely encloses the area.

 Overlapping surface-One that is partly inside and partly outside
the area.

 Inside surface-One that is completely inside the area.

 Outside surface-One that is completely outside the area.

Possible relationships between polygon surfaces and a rectangular
area

The tests for determining surface visibility within an area can be
stated in terms of these four classifications. No further subdivisions of a

specified area are needed if one of the following conditions is true:

1. All surfaces are outside surfaces with respect to the area.

2. Only one inside, overlapping, or surrounding surface is in the area.

3. A surrounding surface obscures all other surfaces within the area

boundaries.

57

Unit II – Computer Graphics

Test 1 can be carrieded out by checking the bounding rectangles
of all surfaces against the area boundaries.

Test 2 can also use the bounding rectangles in the xy plane to
identify an inside surface

One method for implementing test 3 is to order surfaces according

to their minimum depth from the view plane. For each surrounding
surface, we then compute the maximum depth within the area under
consideration. If the maximum depth of one of these surrounding

surfaces is closer to the view plane than the minimum depth of all other
surfaces within the area, test 3 is satisfied.

Within a specified area a surrounding surface with a maximum

depth of Zmax obscures all surfaces that have a minimum depth

beyond Zmax

Another method for carrying out test 3 that does not require depth
sorting is to use plane equations to calculate depth values at the four
vertices of the area for all surrounding, overlapping, and inside surfaces,
If the calculated depths for one of the surrounding surfaces is less than

the calculated depths for all other surfaces, test 3 is true. Then the area
can be filled with the intensity values of thesurrounding surface.

For some situations, both methods of implementing test 3 will fail

to identify correctly a surrounding surface that obscures all the other
surfaces. It is faster to subdivide the area than to continue with more

complex testing.
Once outside and surrounding surfaces have been identified for an

area, they will remain outside and surrounding surfaces for all
subdivisions of the area. Furthermore, some inside and overlapping
surfaces can be expected to be eliminated as the subdivision process

continues, so that the areas become easier to analyze.
In the limiting case, when a subdivision the size of a pixel is

produced, we simply calculate the depth of each relevant surface at that

58

Unit II – Computer Graphics

point and transfer the intensity of the nearest surface to the frame
buffer.

As a variation on the basic subdivision process, we could subdivide
areas along surface boundaries instead of dividing them in half. The
below Figure illustrates this method for subdividing areas. The

projection of the boundary of surface S is used to partition the original

area into the subdivisions A1 and A2. Surface S is then a surrounding

surface for A1, and visibility tests 2 and 3 can be applied to determine
whether further subdividing is necessary.

In general, fewer subdivisions are required using this approach,
but more processing is needed to subdivide areas and to analyze the
relation of surfaces to the subdivision boundaries.

Area A is subdivided into A1 and A2, using the boundary of
surface S on the view plane.

2.8.9 OCTREE METHODS

When an octree representation is used for the viewing volume,

hidden-surface elimination is accomplished by projecting octree nodes
onto the viewing surface in a front-to-back order.

In the below Fig. the front face of a region of space (the side
toward the viewer) is formed with octants 0, 1, 2, and 3. Surfaces in the

front of these octants are visible to the viewer. Any surfaces toward the re
in the back octants (4,5,6, and 7) may be hidden by the front surfaces.

59

Unit II – Computer Graphics

Back surfaces are eliminated, for the viewing directionby

processing data elements in the octree nodes in the order 0, 1, 2,3,4, 5,
6, 7.

This results in a depth-first traversal of the octree, so that nodes
representing octants 0, 1.2, and 3 for the entire region are visited before

the nodes representing octants 4,5,6, and 7.
Similarly, the nodes for the front four suboctants of octant 0

are visited before the nodes for the four back suboctants. The traversal of
the octree continues in this order for each octant subdivision.

When a color value is encountered in an octree node, the pixel area
in the frame buffer corresponding to this node is assigned that color
value only if no values have previously been stored in this area. In this

way, only the front colors are loaded into the buffer. Nothing is loaded if
an area is void. Any node that is found to be completely obscured is

eliminated from further processing, so that its subtrees are not accessed.
Different views of objects represented as octrees can be obtained

by applying transformations to the octree representation that reorient the
object according to the view selected.

A method for displaying an octree is first to map the octree onto a

quadtree of visible areas by traversing octree nodes from front to back in
a recursive procedure. Then the quadtree representation for the visible

surfaces is loaded into the frame buffer. The below Figure depicts the
octants in a region of space and the corresponding quadrants on the

view plane.

View Plane

Contributions to quadrant 0 come from octants 0 and 4. Color
values in quadrant 1 are obtained from surfaces in octants1 and 5, and

values in each of the other two quadrants are generated from the pair of
octants aligned with each of these quadrants.

In most cases, both a front and a back octant must be considered

in determining the correct color values for a quadrant. But if the front
octant is homogeneously filled with some color, we do not process the

60

Unit II – Computer Graphics

back octant. If the front is empty the, the rear octant is processed.
Otherwise, two ,.recursive calls are made, one for the rear octant and one
for the front octant.
typedef enum (SOLID, MIXED } Status;
bdefine EMPTY -1

typedef struct tOctree (
int id;
Status status;
union (
int color;

struct tOctree *children[8]:
) data;
}Octree:

typedef struct tQuadtree i
int id:
Status status;
union [
int color;
struct tQuadtree *children[4];
) data;
) Quadtree;

int nQuadtree = 0.
void octreeToQuadtree (Octree *oTree. Quadtree *qTree)

(

Octree *front. *back:
Quadtree *newQuadtree;

int i, j;
if (oTree->status == SOLID) (

qTree->status = SOLID:
qTree->data.color = oTree->data color:
return:
)
qTree->status = MIXED:
/*Fill in each quad of the quadtree *I
for (i = O ; i<4; i++)
{

front = oTree->data.children[il;
back = oTree->data..children[i+4];
newQuadtree = (Quadtree *) malloc (sizeof (Quadtree)):

newQuadtree->id = nQuadtree++;
newQuadtree->status = SOLID;
qTree->data.childrenIil = newQuadtree;
if (front->status == SOLID)
if (front->data.color != EMPTY)

qTree->data.children[i]->data.color = front->data.color;
else

if (back->status == SOLID)
if (back->data.color != EMPTY)
qTree->data.children[i]->data.color = back->data.color;

61

Unit II – Computer Graphics

else
qTree->data.children[il->data.color = EMPTY;

else (/ * back node is mixed * /
newQuadtree->status = MIXED;
octreeToQuadtree (back, newguadtree);

octreeToQuadtree (front, newQuadtree):
}

}
}

2.8.10 RAY CASTING METHOD

If we consider the line of sight from a pixel position on the view

plane through a scene, as in the Fig. below, we can determine which
objects in the scene intersect this line.

After calculating all ray-surface intersections, we identify the
visible surface as the one whose intersection point is closest to the pixel.
This visibility detection scheme uses ray-casting procedures.

Ray casting, as a visibility detection tool, is based on geometric

optics methods, which trace the paths of light rays. Since there are an
infinite number of light rays in a scene and we are interested only in

those rays that pass through pixel positions, we can trace the light-ray
paths backward from the pixels through the scene.

The ray-casting approach is an effective visibility-detection method
for scenes with curved surfaces, particularly spheres.

A ray along a line of sight from a pixel position through a scene

We can think of ray casting as a variation on the depth-buffer
method . In the depth-buffer algorithm, we process surfaces one at a
time and calculate depth values for all projection points over the surface.

The calculated surface depths are then compared to previously stored
depths to determine visible surfaces at each pixel.

In ray casting, we process pixels one at a time and calculate

depths for all surfaces along the projection path to that pixel. Ray casting
is a special case of ray-tracing algorithms that trace multiple ray paths

to pick up global reflection and refraction contributions from
multiple objects in a scene. With ray casting, we only follow a ray out
from each pixel to the nearest object.

62

Unit II – Computer Graphics

2.8.11 Curved Surfaces

Effective methods for determining visibility for objects with curved

surfaces include ray-casting and octree methods.
With ray casting, we calculate ray-surface intersections and locate

the smallest intersection distance along the pixel ray.

With octree, once the representation has been established from the

input definition of the objects, all visible surfaces are identified with the
same processing procedures.

No special considerations need be given to different kinds of curved
surfaces. We can also approximate a curved surface as a set of plane,
polygon surfaces and use one of the other hidden-surface methods.With

some objects, such as spheres, it can be more efficient as well as more

accurate to use ray casting and the curved-surface equation.
Curved-Surface Representations

We can represent a surface with an implicit equation of the form
f(x, y, z) = 0 or with a parametric representation .

Spline surfaces, for instance, are normally described with
parametric equations.

In some cases, it is useful to obtain an explicit surface equation,
as, for example, a height function over an xy ground plane:

z=f(x,y)

Many objects of interest, such as spheres, ellipsoids, cylinders, and
cones, have quadratic representations.

Scan-line and ray-casting algorithms often involve numerical

approximation techniques to solve the surface equation at the
intersection point with a scan line or with a pixel ray. Various
techniques, including parallel calculations and fast hardware

implementations, have been developed for solving the curved-surface
equations for commonly used objects.
Surface Contour Plots

For many applications in mathematics, physical sciences,

engineering and other fields, it is useful to display a surface function
with a set of contour lines that shows the surface shape. The surface
may be described with an equation or with data tables.

With an explicit functional representation, we can plot the visible

surface contour lines and eliminate those contour sections that are
hidden by the visible parts of the surface.

To obtain an xy plot of a functional surface, we write the surface
representation in the form

y=f(x,z) ----------------(1)

A curve in the xy plane can then be plotted for values of z within

some selected range, using a specified interval ∆z. Starting with the
largest value of z, we plot the curves from "front" to "back" and eliminate

hidden sections.
We draw the curve sections on the screen by mapping an xy range

for the function into an xy pixel screen range. Then, unit steps are taken
in x and the corresponding y value for each x value is determined from

Eq. (1) for a given value of z.

63

Unit II – Computer Graphics

One way to identify the visible curve sections on the surface is to

maintain a list of ymin, and ymax, values previously calculated for the
pixel x coordinates on the screen.

As we step from one pixel x position to the next, we check the

calculated y value against the stored range, ymin, and ymax, for the next
pixel.

If ymin<= y<= ymax that point on the surface is not visible and we
do not plot it. But if the calculated y value is outside the stored y bounds
for that pixel, the point is visible. We then plot the point and reset the
bounds for that pixel.

2.8.12 WireFrame Methods

When only the outline of an object is to be displayed, visibility tests

are applied to surface edges. Visible edge sections are displayed, and

hidden edge sections can either be eliminated or displayed differently
from the visible edges. For example,hidden edges could be drawn as
dashed lines.

Procedures for determining visibility of object edges are referred to
as wireframe-visibility methods. They are also called visible line
detection methods or hidden-line detection methods.

A direct approach to identifying the visible lines in a scene is to

compare each line to each surface, we now want to determine which
sections of the lines are hidden by surfaces.

For each line, depth values are compared to the surfaces to
determine which line sections are not visible. We can use coherence
methods to identify hidden line segments without actually testing

each coordinate position. If both line intersections with the projection of

a surface boundary have greater depth than the surface at those points,
the line segment between the intersections is completely hidden, as in

Fig. (a).
This is the usual situation in a scene, but it is also possible to have

lines and surfaces intersecting each other. When a line has greater depth
at one boundary intersection and less depth than the surface at the
other boundary intersection, the line must penetrate the surface interior,

as in Fig. (b). In this case, we calculate the intersection point of the line

with the surface using the plane equation and display only the visible
sections.

Hidden line sections (dashed) for a line that (a) passes behind a
surface and (b) penetrates a surface

64

Unit II – Computer Graphics

Some visible-surface methods are readily adapted to wireframe

visibility testing. Using a back-face method, we could identify all the back
surfaces of an object and display only the boundaries for the visible
surfaces. With depth sorting, surfaces can be painted into the refresh

buffer so that surface interiors are in the background color, while
boundaries are in the foreground color.

By processing the surfaces from back to front, hidden lines are
erased by the nearer surfaces.An area-subdivision method can be

adapted to hidden-line removal by displaying only the boundaries of
visible surfaces. Scan-line methods can be used to display visible lines
by setting points along the scan line that coincide with boundaries of

visible surfaces.

2.8.13 VISIBILITY-DETECTION FUNCTIONS

Often, three-dimensional graphics packages accommodate several
visible-surface detection procedures, particularly the back-face and
depth-buffer methods.

A particular function can then be invoked with the procedure
name, such as back-Face or depthBuffer.

CS2401 – Computer Graphics Unit - III

 1 CSE/IT

UNIT III - GRAPHICS PROGRAMMING

Color Models – RGB, YIQ, CMY, HSV – Animations – General Computer Animation,

Raster, Keyframe - Graphics programming using OPENGL – Basic graphics primitives –

Drawing three dimensional objects - Drawing three dimensional scenes

Color Models

Color Model is a method for explaining the properties or behavior of color within some

particular context. No single color model can explain all aspects of color, so we make use

of different models to help describe the different perceived characteristics of color.

Properties of Light

 Light is a narrow frequency band within the electromagnetic system.

 Other frequency bands within this spectrum are called radio waves, micro waves,

infrared waves and x-rays. The below fig shows the frequency ranges for some of

the electromagnetic bands.

 Each frequency value within the visible band corresponds to a distinct color.

 At the low frequency end is a red color (4.3*10
4

Hz) and the highest frequency is a

violet color (7.5 *10
14

Hz)

 Spectral colors range from the reds through orange and yellow at the low
frequency end to greens, blues and violet at the high end.

CS2401 – Computer Graphics Unit - III

 2 CSE/IT

 Since light is an electro magnetic wave, the various colors are described in terms
of either the frequency for the wave length λ of the wave.

 The wave length ad frequency of the monochromatic wave are inversely

proportional to each other, with the proportionality constants as the speed of light

C where C = λ f

CS2401 – Computer Graphics Unit - III

 3 CSE/IT

 A light source such as the sun or a light bulb emits all frequencies within the

visible range to produce white light. When white light is incident upon an object,

some frequencies are reflected and some are absorbed by the object. The

combination of frequencies present in the reflected light determines what we

perceive as the color of the object.

 If low frequencies are predominant in the reflected light, the object is described as

red. In this case, the perceived light has the dominant frequency at the red end of

the spectrum. The dominant frequency is also called the hue, or simply the color of

the light.

 Brightness is another property, which in the perceived intensity of the light.

 Intensity in the radiant energy emitted per limit time, per unit solid angle, and per
unit projected area of the source.

 Radiant energy is related to the luminance of the source.

 The next property in the purity or saturation of the light.

- Purity describes how washed out or how pure the color of the light appears.

- Pastels and Pale colors are described as less pure.

 The term chromaticity is used to refer collectively to the two properties, purity and
dominant frequency.

 Two different color light sources with suitably chosen intensities can be used to
produce a range of other colors.

 If the 2 color sources combine to produce white light, they are called

complementary colors. E.g., Red and Cyan, green and magenta, and blue and

yellow.

 Color models that are used to describe combinations of light in terms of dominant

frequency use 3 colors to obtain a wide range of colors, called the color gamut.

 The 2 or 3 colors used to produce other colors in a color model are called primary
colors.

Standard Primaries

XYZ Color Model

 4 CSE/IT

CS2401 – Computer Graphics Unit - III

 The set of primaries is generally referred to as the XYZ or (X,Y,Z) color model

where X,Y and Z represent vectors in a 3D, additive color space.

 Any color Cλ is expressed as

Cλ = XX + YY + ZZ -------------(1)

to match Cλ.
Where X,Y and Z designates the amounts of the standard primaries needed

 It is convenient to normalize the amount in equation (1) against luminance (X
+ Y+ Z). Normalized amounts are calculated as,

x = X/(X+Y+Z), y = Y/(X+Y+Z), z = Z/(X+Y+Z)

with x + y + z = 1

 Any color can be represented with just the x and y amounts. The parameters x and
y are called the chromaticity values because they depend only on hue and purity.

 If we specify colors only with x and y, we cannot obtain the amounts X, Y and Z.
so, a complete description of a color in given with the 3 values x, y and Y.

X = (x/y)Y, Z = (z/y)Y

Where z = 1-x-y.

Intuitive Color Concepts

 Color paintings can be created by mixing color pigments with white and black
pigments to form the various shades, tints and tones.

 Starting with the pigment for a „pure color‟ the color is added to black pigment to
produce different shades. The more black pigment produces darker shades.

 Different tints of the color are obtained by adding a white pigment to the original

color, making it lighter as more white is added.

 Tones of the color are produced by adding both black and white pigments.

RGB Color Model

 Based on the tristimulus theory of version, our eyes perceive color through the

stimulation of three visual pigments in the cones on the retina.

 5 CSE/IT

CS2401 – Computer Graphics Unit - III

 These visual pigments have a peak sensitivity at wavelengths of about 630 nm (red),
530 nm (green) and 450 nm (blue).

 By comparing intensities in a light source, we perceive the color of the light.

 This is the basis for displaying color output on a video monitor using the 3 color

primaries, red, green, and blue referred to as the RGB color model. It is represented

in the below figure.

 6 CSE/IT

CS2401 – Computer Graphics Unit - III

 The sign represents

black, and the vertex with coordinates (1,1,1) in white.

 Vertices of the cube on the axes represent the primary colors, the remaining vertices
represents the complementary color for each of the primary colors.

 The RGB color scheme is an additive model. (i.e.,) Intensities of the primary colors
are added to produce other colors.

 Each color point within the bounds of the cube can be represented as the triple
(R,G,B) where values for R, G and B are assigned in the range from 0 to1.

 The color Cλ is expressed in RGB component as

Cλ = RR + GG + BB

 The magenta vertex is obtained by adding red and blue to produce the triple (1,0,1)
and white at (1,1,1) in the sum of the red, green and blue vertices.

 Shades of gray are represented along the main diagonal of the cube from the origin
(black) to the white vertex.

 7 CSE/IT

CS2401 – Computer Graphics Unit - III

2.5.5 YIQ Color Model

 The National Television System Committee (NTSC) color model for forming the
composite video signal in the YIQ model.

 In the YIQ color model, luminance (brightness) information in contained in the Y

parameter, chromaticity information (hue and purity) is contained into the I and Q

parameters.

 A combination of red, green and blue intensities are chosen for the Y parameter to
yield the standard luminosity curve.

 Since Y contains the luminance information, black and white TV monitors use only
the Y signal.

 Parameter I contain orange-cyan hue information that provides the flash-tone
shading and occupies a bandwidth of 1.5 MHz.

 Parameter Q carries green-magenta hue information in a bandwidth of about 0.6
MHz.

 An RGB signal can be converted to a TV signal using an NTSC encoder which
converts RGB values to YIQ values, as follows

Y 0.299

I 0.596

Q 0.212

0.587

0.275

0.528

0.144 R

0.321 G

0.311 B

 An NTSC video signal can be converted to an RGB signal using an NTSC encoder

which separates the video signal into YIQ components, the converts to RCB values,

as follows:

R 1.000

G 1.000

B 1.000

0.956

0.272

1.108

0.620 Y

0.647 I

1.705 Q

 8 CSE/IT

CS2401 – Computer Graphics Unit - III

CMY Color Model

 A color model defined with the primary colors cyan, magenta, and yellow (CMY)
in useful for describing color output to hard copy devices.

 It is a subtractive color model (i.e.,) cyan can be formed by adding green and blue

light. When white light is reflected from cyan-colored ink, the reflected light must

have no red component. i.e., red light is absorbed or subtracted by the link.

 Magenta ink
subtracts the green component from incident light and yellow subtracts the
blue component.

 In CMY model, point
(1,1,1) represents black because all components of the incident light are subtracted.

 The origin represents white light.

 Equal amounts of each of the primary colors produce grays along the main
diagonal of the cube.

 A combination of cyan and magenta ink produces blue light because the red and
green components of the incident light are absorbed.

 The printing process often used with the CMY model generates a color point with

a collection of 4 ink dots; one dot is used for each of the primary colors (cyan,

magenta and yellow) and one dot in black.

 9 CSE/IT

CS2401 – Computer Graphics Unit - III

 The conversion from an RGB representation to a CMY representation is expressed
as

C 1 R

M 1 G

Y 1 B

Where the white is represented in the RGB system as the unit column vector.

Similarly the conversion of CMY to RGB representation is expressed as

R 1 C

G 1 M

B 1 Y

Where black is represented in the CMY system as the unit column vector.

HSV Color Model

 The HSV model uses color descriptions that have a more interactive appeal to a

user.

 Color parameters in this model are hue (H), saturation (S), and value (V).

 The 3D representation of the HSV model is derived from the RGB cube. The
outline of the cube has the hexagon shape.

 1
0

CSE/IT

CS2401 – Computer Graphics Unit - III

 The boundary of the hexagon represents the various hues, and it is used as the top
of the HSV hexcone.

 In the hexcone, saturation is measured along a horizontal axis, and value is along a
vertical axis through the center of the hexcone.

 Hue is represented as an angle about the vertical axis, ranging from 0

0
at red

through 360
0
. Vertices of the hexagon are separated by 60

0
intervals.

 Yellow is at 60

0
,

green at 120
0

and cyan opposite red at H = 180
0
. Complementary colors are 180

0

apart.

 Saturation S varies from 0 to 1. the maximum purity at S = 1, at S = 0.25, the hue

is said to be one quarter pure, at S = 0, we have the gray scale.

 Value V varies from 0 at the apex to 1 at the top.

- the apex representation black.

 At the top of the hexcone, colors have their maximum intensity.

 When V = 1 and S = 1 we have the „pure‟ hues.

White is the point at V = 1 and S = 0.

CS2401 – Computer Graphics Unit - III

 9

HLS Color Model

 HLS model is based on intuitive color parameters used by Tektronix.

 It has the double cone representation shown in the below figure. The 3 parameters
in this model are called Hue (H), lightness (L) and saturation (s).

CS2401 – Computer Graphics Unit - III

 10

 Hue

specifies an angle about the vertical axis that locates a chosen hue. In

this model H = θ
0

corresponds to Blue.

 The remaining colors are specified around the perimeter of the cone in the same

order as in the HSV model.

 Magenta is at 60
0
, Red in at 120

0
, and cyan in at H = 180

0
.

 The vertical axis is called lightness (L). At L = 0, we have black, and white is at L
= 1 Gray scale in along the L axis and the “purehues” on the L = 0.5 plane.

 Saturation parameter S specifies relative purity of a color. S varies from 0 to 1

pure hues are those for which S = 1 and L = 0.5

CS2401 – Computer Graphics Unit - III

 11

- As S decreases, the hues are said to be less pure.

- At S= 0, it is said to be gray scale.

Animation

 Computer animation refers to any time sequence of visual changes in a scene.

 Computer animations can also be generated by changing camera parameters such
as position, orientation and focal length.

 Applications of computer-generated animation are entertainment, advertising,
training and education.

Example : Advertising animations often transition one object shape into another.

Frame-by-Frame animation

Each frame of the scene is separately generated and stored. Later, the frames can be

recoded on film or they can be consecutively displayed in "real-time playback" mode

Design of Animation Sequences

An animation sequence in designed with the following steps:

 Story board layout

 Object definitions

 Key-frame specifications

 Generation of in-between frames.

Story board

 The story board is an outline of the action.

 It defines the motion sequences as a set of basic events that are to take place.

 Depending on the type of animation to be produced, the story board could consist
of a set of rough sketches or a list of the basic ideas for the motion.

Object Definition

An object definition is given for each participant in the action.

CS2401 – Computer Graphics Unit - III

 12

 Objects can be defined in terms of basic shapes such as polygons or splines.

The associated movements of each object are specified along with the shape.

Key frame

 A key frame is detailed drawing of the scene at a certain time in the animation

sequence.

 Within each key frame, each object is positioned according to the time for that

frame.

 Some key frames are chosen at extreme positions in the action; others are spaced
so that the time interval between key frames is not too much.

In-betweens

 In betweens are the intermediate frames between the key frames.

 The number of in between needed is determined by the media to be used to display
the animation.

 Film requires 24 frames per second and graphics terminals are refreshed at the rate
of 30 to 60 frames per seconds.

 Time intervals for the motion are setup so there are from 3 to 5 in-between for
each pair of key frames.

 Depending on the speed of the motion, some key frames can be duplicated.

 For a 1 min film sequence with no duplication, 1440 frames are needed.

 Other required tasks are

- Motion verification

- Editing

- Production and synchronization of a sound track.

General Computer Animation Functions

Steps in the development of an animation sequence are,

1. Object manipulation and rendering

CS2401 – Computer Graphics Unit - III

 13

2. Camera motion

3. Generation of in-betweens

 Animation packages such as wave front provide special functions for designing
the animation and processing individuals objects.

 Animation packages facilitate to store and manage the object database.

 Object shapes and associated parameter are stored and updated in the database.

 Motion can be generated according to specified constraints using 2D and 3D
transformations.

 Standard functions can be applied to identify visible surfaces and apply the
rendering algorithms.

 Camera movement functions such as zooming, panning and tilting are used for
motion simulation.

 Given the specification for the key frames, the in-betweens can be automatically
generated.

Raster Animations

 On raster systems, real-time animation in limited applications can be generated
using raster operations.

 Sequence of raster operations can be executed to produce real time animation of
either 2D or 3D objects.

 We can animate objects along 2D motion paths using the color-table
transformations.

- Predefine the object as successive positions along the motion path, set the
successive blocks of pixel values to color table entries.

- Set the pixels at the first position of the object to „on‟ values, and set the

pixels at the other object positions to the background color.

- The animation is accomplished by changing the color table values so that

the object is „on‟ at successive positions along the animation path as the

preceding position is set to the background intensity.

CS2401 – Computer Graphics Unit - III

 14

Computer Animation Languages

 Animation functions include a graphics editor, a key frame generator and standard

graphics routines.

 The graphics editor allows designing and modifying object shapes, using spline

surfaces, constructive solid geometry methods or other representation schemes.

 Scene description includes the positioning of objects and light sources defining the

photometric parameters and setting the camera parameters.

 Action specification involves the layout of motion paths for the objects and
camera.

 Keyframe systems are specialized animation languages designed dimply to
generate the in-betweens from the user specified keyframes.

 Parameterized systems allow object motion characteristics to be specified as part

of the object definitions. The adjustable parameters control such object

characteristics as degrees of freedom motion limitations and allowable shape

changes.

 Scripting systems allow object specifications and animation sequences to be

defined with a user input script. From the script, a library of various objects and

motions can be constructed.

Keyframe Systems

 Each set of in-betweens are generated from the specification of two keyframes.

 For complex scenes, we can separate the frames into individual components or

objects called cells, an acronym from cartoon animation.

CS2401 – Computer Graphics Unit - III

Morphing

 Transformation of object shapes from one form to another is called Morphing.

 Morphing methods can be applied to any motion or transition involving a
change in shape. The example is shown in the below figure.

 The general preprocessing rules for equalizing keyframes in terms of either the

number of vertices to be added to a keyframe.

CS2401 – Computer Graphics Unit - III

 Suppose we equalize the edge count and parameters Lk and Lk+1 denote the
number of line segments in two consecutive frames. We define,

Lmax = max (Lk, Lk+1)

Lmin = min(Lk , Lk+1)

Ne = Lmax mod Lmin

Ns = int (Lmax/Lmin)

 The preprocessing is accomplished by

1. Dividing Ne edges of keyframemin into Ns+1 section.

2. Dividing the remaining lines of keyframemin into Ns sections.

 For example, if Lk = 15 and Lk+1 = 11, we divide 4 lines of keyframek+1 into 2
sections each. The remaining lines of keyframek+1 are left infact.

 If the vector counts in equalized parameters Vk and Vk+1 are used to denote the
number of vertices in the two consecutive frames. In this case we define

Vmax = max(Vk,Vk+1), Vmin = min(Vk,Vk+1) and

Nls = (Vmax -1) mod (Vmin – 1)

Np = int ((Vmax – 1)/(Vmin – 1))

 Preprocessing using vertex count is performed by

1. Adding Np points to Nls line section of keyframemin.

2. Adding Np-1 points to the remaining edges of keyframemin.

Simulating Accelerations

Curve-fitting techniques are often used to specify the animation paths between key

frames. Given the vertex positions at the key frames, we can fit the positions with linear

or nonlinear paths. Figure illustrates a nonlinear fit of key-frame positions. This

determines the trajectories for the in-betweens. To simulate accelerations, we can adjust

the time spacing for the in-betweens.

CS2401 – Computer Graphics Unit - III

For constant speed (zero acceleration), we use equal-interval time spacing for the in-

betweens. Suppose we want n in-betweens for key frames at times t1 and t2.

The time interval between key frames is then divided into n + 1 subintervals, yielding an

in-between spacing of

∆= t2-t1/n+1

we can calculate the time for any in-between as

tBj = t1+j ∆t, j = 1,2, n

Motion Specification

These are several ways in which the motions of objects can be specified in an
animation system.

Direct Motion Specification

 Here the rotation angles and translation vectors are explicitly given.

 Then the geometric transformation matrices are applied to transform coordinate
positions.

CS2401 – Computer Graphics Unit - III

curve

We can approximate the path of a bouncing ball with a damped, rectified, sine

y (x) = A / sin(ωx + θ0) /e
-kx

where A is the initial amplitude, ω is the angular frequency, θ0 is the phase angle and k is
the damping constant.

Goal Directed Systems

 We can specify the motions that are to take place in general terms that abstractly

describe the actions.

 These systems are called goal directed. Because they determine specific motion

parameters given the goals of the animation.

 Eg., To specify an object to „walk‟ or to „run‟ to a particular distance.

Kinematics and Dynamics

 With a kinematics description, we specify the animation by motion parameters

(position, velocity and acceleration) without reference to the forces that cause the

motion.

 For constant velocity (zero acceleration) we designate the motions of rigid bodies
in a scene by giving an initial position and velocity vector for each object.

CS2401 – Computer Graphics Unit - III

 We can specify accelerations (rate of change of velocity), speed up, slow downs
and curved motion paths.

 An alternative approach is to use inverse kinematics; where the initial and final

positions of the object are specified at specified times and the motion parameters

are computed by the system.

Graphics programming using OPENGL

OpenGL is a software interface that allows you to access the graphics hardware without

taking care of the hardware details or which graphics adapter is in the system. OpenGL is

a low-level graphics library specification. It makes available to the programmer a small

set of geomteric primitives - points, lines, polygons, images, and bitmaps. OpenGL

provides a set of commands that allow the specification of geometric objects in two or

three dimensions, using the provided primitives, together with commands that control

how these objects are rendered (drawn).

Libraries

 OpenGL Utility Library (GLU) contains several routines that use lower-level

OpenGL commands to perform such tasks as setting up matrices for specific

viewing orientations and projections and rendering surfaces.

 OpenGL Utility Toolkit (GLUT) is a window-system-independent toolkit, written

by Mark Kilgard, to hide the complexities of differing window APIs.

Include Files

For all OpenGL applications, you want to include the gl.h header file in every file.

Almost all OpenGL applications use GLU, the aforementioned OpenGL Utility Library,

which also requires inclusion of the glu.h header file. So almost every OpenGL source

file begins with:

#include <GL/gl.h>

#include <GL/glu.h>

If you are using the OpenGL Utility Toolkit (GLUT) for managing your window

manager tasks, you should include:

#include <GL/glut.h>

The following files must be placed in the proper folder to run a OpenGL Program.

CS2401 – Computer Graphics Unit - III

Libraries (place in the lib\ subdirectory of Visual C++)

opengl32.lib
glu32.lib
glut32.lib

Include files (place in the include\GL\ subdirectory of Visual C++)

gl.h

glu.h

glut.h

Dynamically-linked libraries (place in the \Windows\System subdirectory)

opengl32.dll

glu32.dll

glut32.dll

Working with OpenGL

Opening a window for Drawing

The First task in making pictures is to open a screen window for drawing. The following

five functions initialize and display the screen window in our program.

1. glutInit(&argc, argv)

The first thing we need to do is call the glutInit() procedure. It should be called before

any other GLUT routine because it initializes the GLUT library. The parameters to

glutInit() should be the same as those to main(), specifically main(int argc, char** argv)

and glutInit(&argc, argv).

2. glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB)

The next thing we need to do is call the glutInitDisplayMode() procedure to specify the
display mode for a window.

We must first decide whether we want to use an RGBA (GLUT_RGB) or color-index

(GLUT_INDEX) color model. The RGBA mode stores its color buffers as red, green,

blue, and alpha color components. Color-index mode, in contrast, stores color buffers in

indicies. And for special effects, such as shading, lighting, and fog, RGBA mode

provides more flexibility. In general, use RGBA mode whenever possible. RGBA mode

is the default.

ftp://ftp.csis.gvsu.edu/wolffe/graphics/lib/opengl32.lib
ftp://ftp.csis.gvsu.edu/wolffe/graphics/lib/glu32.lib
ftp://ftp.csis.gvsu.edu/wolffe/graphics/lib/glu32.lib
ftp://ftp.csis.gvsu.edu/wolffe/graphics/lib/glu32.lib
ftp://ftp.csis.gvsu.edu/wolffe/graphics/include/gl.h
ftp://ftp.csis.gvsu.edu/wolffe/graphics/include/gl.h
ftp://ftp.csis.gvsu.edu/wolffe/graphics/include/gl.h
ftp://ftp.csis.gvsu.edu/wolffe/graphics/include/glut.h
ftp://ftp.csis.gvsu.edu/wolffe/graphics/dll/opengl32.dll
ftp://ftp.csis.gvsu.edu/wolffe/graphics/dll/glu32.dll
ftp://ftp.csis.gvsu.edu/wolffe/graphics/dll/glu32.dll
ftp://ftp.csis.gvsu.edu/wolffe/graphics/dll/glu32.dll
http://www.cs.uccs.edu/~semwal/man.html#glutInit
http://www.cs.uccs.edu/~semwal/man.html#glutInit
http://www.cs.uccs.edu/~semwal/man.html#glutInit
http://www.cs.uccs.edu/~semwal/man.html#glutInit
http://www.cs.uccs.edu/~semwal/man.html#glutInitDisplayMode

CS2401 – Computer Graphics Unit - III

Another decision we need to make when setting up the display mode is whether we want

to use single buffering (GLUT_SINGLE) or double buffering (GLUT_DOUBLE). If we

aren't using annimation, stick with single buffering, which is the default.

3. glutInitWindowSize(640,480)

We need to create the characteristics of our window. A call to glutInitWindowSize() will

be used to specify the size, in pixels, of our inital window. The arguments indicate the

height and width (in pixels) of the requested window.

4. glutInitWindowPosition(100,15)

Similarly, glutInitWindowPosition() is used to specify the screen location for the upper-

left corner of our initial window. The arguments, x and y, indicate the location of the

window relative to the entire display. This function positioned the screen 100 pixels over

from the left edge and 150 pixels down from the top.

5. glutCreateWindow(“Example”)

To create a window, the with the previously set characteristics (display mode, size,

location, etc), the programmer uses the glutCreateWindow() command. The command

takes a string as a parameter which may appear in the title bar.

6. glutMainLoop()

The window is not actually displayed until the glutMainLoop() is entered. The very last
thing is we have to call this function

Event Driven Programming

The method of associating a call back function with a particular type of event is called as
event driven programming. OpenGL provides tools to assist with the event management.

There are four Glut functions available

1. glutDisplayFunc(mydisplay)

The glutDisplayFunc() procedure is the first and most important event callback function.

A callback function is one where a programmer-specified routine can be registered to be

called in response to a specific type of event. For example, the argument of

glutDisplayFunc(mydisplay) is the function that is called whenever GLUT determines

that the contents of the window needs to be redisplayed. Therefore, we should put all the

routines that you need to draw a scene in this display callback function.

http://www.cs.uccs.edu/~semwal/man.html#glutInitWindowSize
http://www.cs.uccs.edu/~semwal/man.html#glutInitWindowPosition
http://www.cs.uccs.edu/~semwal/man.html#glutCreateWindow
http://www.cs.uccs.edu/~semwal/man.html#glutMainLoop
http://www.cs.uccs.edu/~semwal/man.html#glutDisplayFunc
http://www.cs.uccs.edu/~semwal/man.html#glutDisplayFunc
http://www.cs.uccs.edu/~semwal/man.html#glutDisplayFunc

CS2401 – Computer Graphics Unit - III

2. glutReshapeFunc(myreshape)

The glutReshapeFunc() is a callback function that specifies the function that is called

whenever the window is resized or moved. Typically, the function that is called when

needed by the reshape function displays the window to the new size and redefines the

viewing characteristics as desired.

3. glutKeyboardFunc(mykeyboard)

GLUT interaction using keyboard inputs is handled. The command glutKeyboardFunc()

is used to run the callback function specified and pass as parameters, the ASCII code of

the pressed key, and the x and y coordinates of the mouse cursor at the time of the event.

Special keys can also be used as triggers. The key passed to the callback function, in this
case, takes one of the following values (defined in glut.h).

Special keys can also be used as triggers. The key passed to the callback function, in this
case, takes one of the following values (defined in glut.h).

GLUT_KEY_UP

GLUT_KEY_RIGHT

GLUT_KEY_DOWN

GLUT_KEY_PAGE_UP

GLUT_KEY_PAGE_DOWN

GLUT_KEY_HOME

GLUT_KEY_END

GLUT_KEY_INSERT

Up Arrow

Right Arrow

Down Arrow

Page Up
Page Down
Home

End

Insert

4. glutMouseFunc(mymouse)

GLUT supports interaction with the computer mouse that is triggered when one of the

three typical buttons is presses. A mouse callback fuction can be initiated when a given

mouse button is pressed or released. The command glutMouseFunc() is used to specify

the callback function to use when a specified button is is a given state at a certain

location. This buttons are defined as either GL_LEFT_BUTTON,

GL_RIGHT_BUTTON, or GL_MIDDLE_BUTTON and the states for that button are

either GLUT_DOWN (when pressed) or GLUT_UP (when released). Finally, x and y

callback parameters indicate the location (in window-relative coordinates) of the mouse
at the time of the event.

http://www.cs.uccs.edu/~semwal/man.html#glutReshapeFunc
http://www.cs.uccs.edu/~semwal/man.html#glutKeyboardFunc
http://www.cs.uccs.edu/~semwal/man.html#glutMouseFunc

CS2401 – Computer Graphics Unit - III

Example : Skeleton for OpenGL Code

int main(int argc, char** argv)

{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize(465, 250);

glutInitWindowPosition(100, 150);

glutCreateWindow("My First Example");

glutDisplayFunc(mydisplay);

glutReshapeFunc(myreshape);

glutMouseFunc(mymouse);

glutKeyboardFunc(mykeyboard);

myinit();

glutMainLoop();

return 0;
}

Basic graphics primitives

OpenGL Provides tools for drawing all the output primitives such as points, lines,

triangles, polygons, quads etc and it is defined by one or more vertices.

To draw such objects in OpenGL we pass it a list of vertices. The list occurs between the

two OpenGL function calls glBegin() and glEnd(). The argument of glBegin() determine

which object is drawn.

These functions are

glBegin(int mode);
glEnd(void);

The parameter mode of the function glBegin can be one of the following:

GL_POINTS

GL_LINES

GL_LINE_STRIP

GL_LINE_LOOP

GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

GL_QUADS

CS2401 – Computer Graphics Unit - III

GL_QUAD_STRIP

GL_POLYGON

glVertex() : The main function used to draw objects is named as glVertex. This function
defines a point (or a vertex) and it can vary from receiving 2 up to 4 coordinates.

Format of glVertex Command

When we wish to refer the basic command without regard to the specific arguments and

datatypes it is specified as

glVertex*();

Example

//the following code plots three dots

glBegin(GL_POINTS);

glVertex2i(100, 50);

glVertex2i(100, 130);

glVertex2i(150, 130);

glEnd();

// the following code draws a triangle

glBegin(GL_TRIANGLES);

glVertex3f(100.0f, 100.0f, 0.0f);

glVertex3f(150.0f, 100.0f, 0.0f);

glVertex3f(125.0f, 50.0f, 0.0f);

glEnd();

// the following code draw a lines

glBegin(GL_LINES);

glVertex3f(100.0f, 100.0f, 0.0f); // origin of the line

glVertex3f(200.0f, 140.0f, 5.0f); // ending point of the line

glEnd();

OpenGl State

OpenGl keeps track of many state variables, such as current size of a point, the current

color of a drawing, the current background color, etc.

The value of a state variable remains active until new value is given.

CS2401 – Computer Graphics Unit - III

glPointSize() : The size of a point can be set with glPointSize(), which takes one floating

point argument

Example : glPointSize(4.0);

glClearColor() : establishes what color the window will be cleared to. The background

color is set with glClearColor(red, green, blue, alpha), where alpha

specifies a degree of transparency

Example : glClearColor (0.0, 0.0, 0.0, 0.0); //set black background color

CS2401 – Computer Graphics Unit - III

glClear() : To clear the entire window to the background color, we use glClear

(GL_COLOR_BUFFER_BIT). The argument GL_COLOR_BUFFER_BIT is another

constant built into OpenGL

Example : glClear(GL_COLOR_BUFFER_BIT)

glColor3f() : establishes to use for drawing objects. All objects drawn after this point use

this color, until it‟s changed with another call to set the color.

Example:

glColor3f(0.0, 0.0, 0.0); //black

glColor3f(1.0, 0.0, 0.0); //red

glColor3f(0.0, 1.0, 0.0); //green

glColor3f(1.0, 1.0, 0.0); //yellow

glColor3f(0.0, 0.0, 1.0); //blue

glColor3f(1.0, 0.0, 1.0); //magenta

glColor3f(0.0, 1.0, 1.0); //cyan

glColor3f(1.0, 1.0, 1.0); //white

gluOrtho2D(): specifies the coordinate system in two dimension

void gluOrtho2D (GLdouble left, GLdouble right, GLdouble bottom,GLdouble top);

Example : gluOrtho2D(0.0, 640.0, 0.0, 480.0);

glOrtho() : specifies the coordinate system in three dimension

Example : glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

glFlush() : ensures that the drawing commands are actually executed rather than stored

in a buffer awaiting (ie) Force all issued OpenGL commands to be executed

glMatrixMode(GL_PROJECTION) : For orthographic projection

glLoadIdentity() : To load identity matrix

glShadeModel : Sets the shading model. The mode parameter can be either
GL_SMOOTH (the default) or GL_FLAT.

void glShadeModel (GLenum mode);

CS2401 – Computer Graphics Unit - III

With flat shading, the color of one particular vertex of an independent primitive is

duplicated across all the primitive‟s vertices to render that primitive. With smooth

shading, the color at each vertex is treated individually.

Example : OpenGL Program to draw three dots (2-Dimension)

#include "stdafx.h"
#include "gl/glut.h"
#include <gl/gl.h>
void myInit(void)
{

glClearColor (1.0, 1.0, 1.0, 0.0);

glColor3f (0.0, 0.0, 0.0);

glPointSize(4.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 640.0, 0.0, 480.0);
}
void Display(void)
{

glClear (GL_COLOR_BUFFER_BIT);
glBegin(GL_POINTS);
glVertex2i(100, 50);

glVertex2i(100, 130);

glVertex2i(150, 130);

glEnd();
glFlush();
}
int main (int argc, char **argv)
{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize(640,480);
glutInitWindowPosition(100,150);
glutCreateWindow("Example");

glutDisplayFunc(Display);

myInit();
glutMainLoop();
return 0;

}

CS2401 – Computer Graphics Unit - III

Example : White Rectangle on a Black Background (3-Dimension co-ordinates)

#include "stdafx.h"

#include "gl/glut.h"
#include <gl/gl.h>

void Display(void)

{

glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);

glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

glBegin(GL_POLYGON);

glVertex3f (0.25, 0.25, 0.0);

glVertex3f (0.75, 0.25, 0.0);

glVertex3f (0.75, 0.75, 0.0);

glVertex3f (0.25, 0.75, 0.0);

glEnd();
glFlush();
}
int main (int argc, char **argv)
{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize(640,480);

glutCreateWindow("Intro");

glClearColor(0.0,0.0,0.0,0.0);

glutDisplayFunc(Display);

glutMainLoop();

return 0;
}

CS2401 – Computer Graphics Unit - III

Example : Big Dipper

#include "stdafx.h"

#include "gl/glut.h"
#include <gl/gl.h>
void myInit(void)
{
glClearColor (0.0, 0.0, 0.0, 0.0);

glColor3f (1.0, 1.0, 1.0);

glPointSize(4.0);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0, 640.0, 0.0, 480.0);
}
void Display(void)

{
glClear (GL_COLOR_BUFFER_BIT);
glBegin(GL_POINTS);

glVertex2i(289, 190);

glVertex2i(320, 128);

glVertex2i(239, 67);

glVertex2i(194, 101);

glVertex2i(129, 83);

glVertex2i(75, 73);

glVertex2i(74, 74);

glVertex2i(20, 10);

glEnd();
glFlush();
}

int main (int argc, char **argv)

{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize(640,480);

glutInitWindowPosition(100,150);

glutCreateWindow("Draw Big Dipper");

glutDisplayFunc(Display);

myInit();

glutMainLoop();

return 0;
}

CS2401 – Computer Graphics Unit - III

Making Line Drawings

OpenGL makes it easy to draw a line: use GL_LINES as the argument to glBegin(), and

pass it the two end points as vertices. Thus to draw a line between (40,100) and (202,96)

use:

glBegin(GL_LINES); // use constant GL_LINES here

glVertex2i(40, 100);

glVertex2i(202, 96);
glEnd();

OpenGL provides tools for setting the attributes of lines.

A line‟s color is set in the same way as for points, using glColor3f().

To draw thicker lines use glLineWidth(4.0). The default thickness is 1.0

To make stippled (dotted or dashed) lines, you use the command glLineStipple() to
define the stipple pattern, and then we enable line stippling with glEnable()

glLineStipple(1, 0x3F07);

glEnable(GL_LINE_STIPPLE);

CS2401 – Computer Graphics Unit - III

Drawing Polylines and Polygons

Polyline is a collection of line segments joined end to end. It is described by an

ordered list of points,

In OpenGL a polyline is called a “line strip”, and is drawn by specifying the vertices in

turn between glBegin(GL_LINE_STRIP) and glEnd().

For example, the code:

glBegin(GL_LINE_STRIP); // draw an open polyline
glVertex2i(20,10);
glVertex2i(50,10);
glVertex2i(20,80);

glVertex2i(50,80);

glEnd();
glFlush();

glBegin(GL_LINE_LOOP); // draw an polygon

glVertex2i(20,10);
glVertex2i(50,10);
glVertex2i(20,80);

glVertex2i(50,80);

glEnd();
glFlush();

Attributes such as color, thickness and stippling may be applied to polylines in the same

way they are applied to single lines. If it is desired to connect the last point with the first

point to make the polyline into a polygon simply replace GL_LINE_STRIP with

GL_LINE_LOOP.

Polygons drawn using GL_LINE_LOOP cannot be filled with a color or pattern. To draw

filled polygons we have to use glBegin(GL_POLYGON)

Drawing Aligned Rectangles.

A special case of a polygon is the aligned rectangle, so called because its sides are

aligned with the coordinate axes.

CS2401 – Computer Graphics Unit - III

OpenGL provides the ready-made function:

glRecti(GLint x1, GLint y1, GLint x2, GLint y2);

// draw a rectangle with opposite corners (x1, y1) and (x2, y2);

// fill it with the current color;

glClearColor(1.0,1.0,1.0,0.0); // white background

glClear(GL_COLOR_BUFFER_BIT); // clear the window

glColor3f(0.6,0.6,0.6); // bright gray

glRecti(20,20,100,70);

glColor3f(0.2,0.2,0.2); // dark gray

glRecti(70, 50, 150, 130);

aspect ratio = width/height;

Polygons

Polygons are the areas enclosed by single closed loops of line segments, where the line

segments are specified by the vertices at their endpoints

Polygons are typically drawn by filling in all the pixels enclosed within the boundary, but

you can also draw them as outlined polygons or simply as points at the vertices. A filled

polygon might be solidly filled, or stippled with a certain pattern

OpenGL also supports filling more general polygons with a pattern or color.

To draw a convex polygon based on vertices (x0, y0), (x1, y1), …, (xn, yn) use the usual

list of vertices, but place them between a glBegin(GL_POLYGON) and an glEnd():

glBegin(GL_POLYGON);

glVertex2f(x0, y0);

glVertex2f(x1, y1);

.

glVertex2f(xn, yn);

glEnd();

The following list explains the function of each of the five constants:

GL_TRIANGLES: takes the listed vertices three at a time, and draws a separate triangle

for each;

GL_QUADS: takes the vertices four at a time and draws a separate quadrilateral for each

CS2401 – Computer Graphics Unit - III

GL_TRIANGLE_STRIP: draws a series of triangles based on triplets of vertices: v0, v1,

v2, then v2, v1, v3, then v2, v3, v4, etc. (in an order so that all triangles are “traversed” in

the same way;e.g. counterclockwise).

GL_TRIANGLE_FAN: draws a series of connected triangles based on triplets of
vertices: v0, v1, v2, then v0, v2, v3, then v0, v3, v4, etc.

GL_QUAD_STRIP: draws a series of quadrilaterals based on foursomes of vertices: first

v0, v1, v3, v2, then v2, v3, v5, v4, then v4, v5, v7, v6 (in an order so that all

quadrilaterals are “traversed” in the same way; e.g. counterclockwise).

Example to draw smooth shaded Trigangle with shades

#include "stdafx.h"

#include "gl/glut.h"
#include <gl/gl.h>
void init(void)
{
glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

gluOrtho2D (0.0, 640.0, 0.0, 480.0);

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

}

void display(void)

CS2401 – Computer Graphics Unit - III

{

glClear (GL_COLOR_BUFFER_BIT);
glBegin (GL_TRIANGLES);
glColor3f (1.0, 0.0, 0.0);

glVertex2f (50.0, 50.0);

glColor3f (0.0, 1.0, 0.0);

glVertex2f (250.0, 50.0);

glColor3f (0.0, 0.0, 1.0);

glVertex2f (50.0, 250.0);

glEnd();

glFlush ();
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize (500, 500);

glutInitWindowPosition (100, 100);
glutCreateWindow ("Shade");
init ();

glutDisplayFunc(display);

glutMainLoop();

return 0;
}

Polygon Filling

A filled polygon might be solidly filled, or stippled with a certain pattern.

The pattern is specified with 128-byte array of data type GLubyte. The 128 bytes

provides the bits for a mask that is 32 bits wide and 32 bits high.

GLubyte mask[]={0xff,0xfe………….128 entries}

The first 4 bytes prescribe the 32 bits across the bottom row from left to right; the next 4
bytes give the next row up, etc..

Example

#include "stdafx.h"
#include "gl/glut.h"
#include <gl/gl.h>

CS2401 – Computer Graphics Unit - III

GLubyte mask[]={

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x03, 0x80, 0x01, 0xC0, 0x06, 0xC0, 0x03, 0x60,
0x04, 0x60, 0x06, 0x20, 0x04, 0x30, 0x0C, 0x20,
0x04, 0x18, 0x18, 0x20, 0x04, 0x0C, 0x30, 0x20,
0x04, 0x06, 0x60, 0x20, 0x44, 0x03, 0xC0, 0x22,
0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,

0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
0x66, 0x01, 0x80, 0x66, 0x33, 0x01, 0x80, 0xCC,
0x19, 0x81, 0x81, 0x98, 0x0C, 0xC1, 0x83, 0x30,
0x07, 0xe1, 0x87, 0xe0, 0x03, 0x3f, 0xfc, 0xc0,
0x03, 0x31, 0x8c, 0xc0, 0x03, 0x33, 0xcc, 0xc0,
0x06, 0x64, 0x26, 0x60, 0x0c, 0xcc, 0x33, 0x30,
0x18, 0xcc, 0x33, 0x18, 0x10, 0xc4, 0x23, 0x08,

0x10, 0x63, 0xC6, 0x08, 0x10, 0x30, 0x0c, 0x08,
0x10, 0x18, 0x18, 0x08, 0x10, 0x00, 0x00, 0x08};

void myInit(void)
{
glClearColor (0.0, 0.0, 0.0, 0.0);

glColor3f (1.0, 1.0, 1.0);

glPointSize(4.0);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0, 640.0, 0.0, 480.0);
}
void Display(void)
{
glClearColor(0.0,0.0,0.0,0.0); // white background

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 1.0, 1.0);

glRectf(25.0, 25.0, 125.0, 125.0);

glEnable(GL_POLYGON_STIPPLE);

glPolygonStipple(mask);

glRectf (125.0, 25.0, 225.0, 125.0);

glDisable(GL_POLYGON_STIPPLE);

glFlush();
}

int main (int argc, char **argv)

{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

CS2401 – Computer Graphics Unit - III

glutInitWindowSize(640,480);

glutInitWindowPosition(100,150);

glutCreateWindow("Polygon Stipple");

glutDisplayFunc(Display);
myInit();
glutMainLoop();
return 0;
}

Simple Interaction with the mouse and keyboard

When the user presses or releases a mouse button, moves the mouse, or presses a

keyboard key, an event occur. Using the OpenGL Utility Toolkit (GLUT) the

CS2401 – Computer Graphics Unit - III

programmer can register a callback function with each of these events by using the

following commands:

glutMouseFunc(myMouse) which registers myMouse() with the event that occurs when

the mouse button is pressed or released;

glutMotionFunc(myMovedMouse) which registers myMovedMouse() with the event

that occurs when the mouse is moved while one of the buttons is pressed;

glutKeyboardFunc(myKeyboard) which registers myKeyBoard() with the event that
occurs when a keyboard key is pressed.

Mouse interaction.

void myMouse(int button, int state, int x, int y);

When a mouse event occurs the system calls the registered function, supplying it with
values for these parameters. The value of button will be one of:

CS2401 – Computer Graphics Unit - III

GLUT_LEFT_BUTTON,

GLUT_MIDDLE_BUTTON,

GLUT_RIGHT_BUTTON,

with the obvious interpretation, and the value of state will be one of: GLUT_UP or

GLUT_DOWN. The values x and y report the position of the mouse at the time of the

event.

Keyboard interaction.

As mentioned earlier, pressing a key on the keyboard queues a keyboard event. The

callback function myKeyboard() is registered with this type of event through

glutKeyboardFunc(myKeyboard).

It must have prototype:

void myKeyboard(unsigned int key, int x, int y);

The value of key is the ASCII value12 of the key pressed. The values x and y report the

position of the mouse at the time that the event occurred. (As before y measures the

number of pixels down from the top of the window.)

void myKeyboard(unsigned char theKey, int mouseX, int mouseY)

{
GLint x = mouseX;
GLint y = screenHeight - mouseY; // flip the y value as always

switch(theKey)
{
case „p‟:

drawDot(x, y); // draw a dot at the mouse position

break;
case GLUT_KEY_LEFT: List[++last].x = x; // add a point
List[last].y = y;

break;
case „E‟:
exit(-1); //terminate the program
default:
break; // do nothing
}
}

CS2401 – Computer Graphics Unit - III

Drawing three dimensional objects & Drawing three dimensional scenes

OpenGL has separate transformation matrices for different graphics features

glMatrixMode(GLenum mode), where mode is one of:

GL_MODELVIEW - for manipulating model in scene

GL_PROJECTION - perspective orientation

GL_TEXTURE - texture map orientation

glLoadIdentity(): loads a 4-by-4 identity matrix into the current matrix

glPushMatrix() : push current matrix stack

glPopMatrix() : pop the current matrix stack

glMultMatrix () : multiply the current matrix with the specified matrix

glViewport() : set the viewport

Example : glViewport(0, 0, width, height);

gluPerspective() : function sets up a perspective projection matrix.

Format : gluPerspective(angle, asratio, ZMIN, ZMAX);

Example : gluPerspective(60.0, width/height, 0.1, 100.0);

gluLookAt() - view volume that is centered on a specified eyepoint

Example : gluLookAt(3.0, 2.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glutSwapBuffers () : glutSwapBuffers swaps the buffers of the current window if

double buffered.

Example for drawing three dimension Objects

glBegin(GL_QUADS); // Start drawing a quad primitive

glVertex3f(-1.0f, -1.0f, 0.0f); // The bottom left corner

glVertex3f(-1.0f, 1.0f, 0.0f); // The top left corner

glVertex3f(1.0f, 1.0f, 0.0f); // The top right corner

glVertex3f(1.0f, -1.0f, 0.0f); // The bottom right corner

glEnd();

CS2401 – Computer Graphics Unit - III

// Triangle

glBegin(GL_TRIANGLES);

glVertex3f(-0.5f, -0.5f, -10.0);

glVertex3f(0.5f, -0.5f, -10.0);

glVertex3f(0.0f, 0.5f, -10.0);

glEnd();

// Quads in different colours

glBegin(GL_QUADS);

glColor3f(1,0,0); //red

glVertex3f(-0.5, -0.5, 0.0);

glColor3f(0,1,0); //green

glVertex3f(-0.5, 0.5, 0.0);

glColor3f(0,0,1); //blue

glVertex3f(0.5, 0.5, 0.0);

glColor3f(1,1,1); //white

glVertex3f(0.5, -0.5, 0.0);

glEnd();

GLUT includes several routines for drawing these three-dimensional objects:

cone

icosahedron

teapot

cube

octahedron

tetrahedron

dodecahedron

sphere

torus

OpenGL Functions for drawing the 3D Objects

glutWireCube(double size);

glutSolidCube(double size);

glutWireSphere(double radius, int slices, int stacks);

glutSolidSphere(double radius, int slices, int stacks);

glutWireCone(double radius, double height, int slices, int stacks);

glutSolidCone(double radius, double height, int slices, int stacks);

glutWireTorus(double inner_radius, double outer_radius, int sides, int rings);

glutSolidTorus(double inner_radius, double outer_radius, int sides, int rings);

glutWireTeapot(double size);

glutSolidTeapot(double size);

CS2401 – Computer Graphics Unit - III

3D Transformation in OpenGL

glTranslate () : multiply the current matrix by a translation matrix

glTranslated(GLdouble x, GLdouble y, GLdouble z);
void glTranslatef(GLfloat x, GLfloat y, GLfloat z);

x, y, z - Specify the x, y, and z coordinates of a translation vector.

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after a

call to glTranslate are translated.

Use glPushMatrix and glPopMatrix to save and restore the untranslated coordinate system.

glRotate() : multiply the current matrix by a rotation matrix

void glRotated(GLdouble angle, GLdouble x, GLdouble y, GLdouble z);

void glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

angle : Specifies the angle of rotation, in degrees.

x, y, z : Specify the x, y, and z coordinates of a vector, respectively.

glScale() : multiply the current matrix by a general scaling matrix

voidglScaled(GLdouble x, GLdouble y, GLdouble z);

void glScalef(GLfloat x, GLfloat y, GLfloat z);

x, y, z : Specify scale factors along the x, y, and z axes, respectively.

Example : Transformation of a Polygon

#include "stdafx.h"

#include "gl/glut.h"

#include <gl/gl.h>

void Display(void)

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glBegin(GL_POLYGON);

glVertex3f(0.0, 0.0, 0.0); // V0 (0, 0, 0)

glVertex3f(1.0f, 0.0, 0.0); // V1 (1, 0, 0)

CS2401 – Computer Graphics Unit - III

glVertex3f(1.0f, 1.0f, 0.0); // V2 (1, 1, 0)

glVertex3f(0.5f, 1.5f, 0.0); // V3 (0.5, 1.5, 0)

glVertex3f(0.0, 1.0f, 0.0); // V4 (0, 1, 0)

glEnd();

glPushMatrix();

glTranslatef(1.5, 2.0, 0.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glScalef(0.5, 0.5, 0.5);

glBegin(GL_POLYGON);

glVertex3f(0.0, 0.0, 0.0); // V0 (0, 0, 0)

glVertex3f(1.0f, 0.0, 0.0); // V1 (1, 0, 0)

glVertex3f(1.0f, 1.0f, 0.0); // V2 (1, 1, 0)

glVertex3f(0.5f, 1.5f, 0.0); // V3 (0.5, 1.5, 0)

glVertex3f(0.0, 1.0f, 0.0); // V4 (0, 1, 0)
glEnd();
glPopMatrix();

glFlush();

glutSwapBuffers();

}

void Init(void)

{

glClearColor(0.0, 0.0, 0.0, 0.0);

}

void Resize(int width, int height)

{

glViewport(0, 0, width, height);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(60.0, width/height, 0.1, 1000.0);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

}

int main(int argc, char **argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

glutInitWindowSize(400, 400);

glutInitWindowPosition(200, 200);

glutCreateWindow("Polygon in OpenGL");

Init();

glutDisplayFunc(Display);

glutReshapeFunc(Resize);

glutMainLoop();

return 0;

}

CS2401 Computer Graphics Unit IV

1

UNIT IV – RENDERING

Introduction to shading models – Flat and smooth shading – Adding

texture to faces – Adding shadows of objects – Building a camera ina
program – Creating shaded objects – Rendering texture – Drawing

shadows.

4.1 Introduction to Shading Models

The mechanism of light reflection from an actual surface is very

complicated it depends on many factors. Some of these factors are
geometric and others are related to the characteristics of the surface.

A shading model dictates how light is scattered or reflected from a

surface. The shading models described here focuses on achromatic light.
Achromatic light has brightness and no color, it is a shade of gray so it is

described by a single value its intensity.
A shading model uses two types of light source to illuminate the

objects in a scene : point light sources and ambient light. Incident
light interacts with the surface in three different ways:

Some is absorbed by the surface and is converted to heat.

Some is reflected from the surface

Some is transmitted into the interior of the object
If all incident light is absorbed the object appears black and is

known as a black body. If all of the incident light is transmitted the
object is visible only through the effects of reflection.

Some amount of the reflected light travels in the right direction to

reach the eye causing the object to be seen. The amount of light that

reaches the eye depends on the orientation of the surface, light and
the observer. There are two different types of reflection of incident

light

Diffuse scattering occurs when some of the incident light

slightly penetrates the surface and is re-radiated uniformly in
all directions. Scattered light interacts strongly with the surface

and so its color is usually affected by the nature of the surface
material.

 Specular reflections are more mirrorlike and highly
directional. Incident light is directly reflected from its outer
surface. This makes the surface looks shinny. In the simplest
model the reflected light has the same color as the incident

light, this makes the material look like plastic. In a more
complex model the color of the specular light varies , providing

a better approximation to the shininess of metal surfaces.
The total light reflected from the surface in a certain

direction is the sum of the diffuse component and the specular

CS2401 Computer Graphics Unit IV

2

component. For each surface point of interest we compute the size
of each component that reaches the eye.

4.1.1 Geometric Ingredients For Finding Reflected Light
We need to find three vectors in order to compute the diffuse

and specular components. The below fig. shows three principal
vectors (s, m and v) required to find the amount of light that
reaches the eye from a point P.

Important directions in computing the reflected light

1. The
normal vector , m , to the surface at P.
2. The vector v from P to the viewer‟s eye.

3. The vector s from P to the light source.
The angles between these three vectors form the basis of

computing light intensities. These angles are normally calculated
using world coordinates.

Each face of a mesh object has two sides. If the object is

solid , one is inside and the other is outside. The eye can see only

the outside and it is this side for which we must compute light
contributions.

We shall develop the shading model for a given side of a face.

If that side of the face is turned away from the eye there is no light
contribution.
4.1.2 How to Compute the Diffuse Component

Suppose that a light falls from a point source onto one side

of a face , a fraction of it is re-radiated diffusely in all directions

CS2401 Computer Graphics Unit IV

3

from this side. Some fraction of the re-radiated part reaches the

eye, with an intensity denoted by Id.
An important property assumed for diffuse scattering is that

it is independent of the direction from the point P, to the location of
the viewer‟s eye. This is called omnidirectional scattering ,

because scattering is uniform in all directions. Therefore Id is
independent of the angle between m and v.

ae cross section of a point source illuminating a face S when
m is aligned with s.

Fig (b) the face is turned partially away from the light source

through angle θ. The area subtended is now only cos(θ) , so that

the brightness is reduced of S is reduced by this same factor. This
relationship between the brightness and surface orientation is
called Lambert’s law.

cos(θ) is the dot product between the normalized versions of
s and m. Therefore the strength of the diffuse component:

s.m
Id = Is ρd

s m

Is is the intensity of the light source and ρd is the diffuse
reflection coefficient. If the facet is aimed away from the eye this

dot product is negative so we need to evaluate Id to 0. A more
precise computation of the diffuse component is :

s.m
Id = Is ρd max ,0

s m

The reflection coefficient ρd depends on the wavelength of the
incident light , the angle θ and various physical properties of the

surface. But for simplicity and to reduce computation time, these
effects are usually suppressed when rendering images. A

reasonable value for ρd is chosen for each surface.
4.1.3 Specular Reflection

Real objects do not scatter light uniformly in all directions

and so a specular component is added to the shading model.
Specular reflection causes highlights which can add reality to a

picture when objects are shinny. The behavior of specular light can
be explained with Phong model.

CS2401 Computer Graphics Unit IV

4

Phong Model
It is easy to apply and the highlights generated by the phong

model given an plasticlike appearance , so the phong model is
good when the object is made of shinny plastic or glass.

The Phong model is less successful with objects that have a
shinny metallic surface.

Fig a) shows a situation where light from a source impinges
on a surface and is reflected in different directions.

In this model we discuss the amount of light reflected is
greatest in the direction of perfect mirror reflection , r, where the
angle of incidence θ

equals the angle of reflection. This is the direction in which all light
would travel if the surface were a perfect mirror. At the other

nearby angles theamount of light reflected diminishes rapidly, Fig

CS2401 Computer Graphics Unit IV

5

(b) shows this with beam patterns. The distance from P to the beam

envelope shows the relative strength
of

the light scattered in that direction.

Fig(c) shows how to quantify this beam pattern effect . The
direction r of perfect reflection depends on both s and the normal
vector m to the surface, according to:

r = -s + 2
 s.m

m

m (the mirror – reflection direction)

For surfaces that are shiny but are not true mirrors, the
amount of light reflected falls off as the angle φ between r and v

increases. In Phong model the φ is said to vary as some power f of

the cosine of φ i.e., (cos (φ))f in which f is chosen experimentally

and usually lies between 1 and 200.

CS2401 Computer Graphics Unit IV

6

4.1.4 The Role of Ambient Light and Exploiting Human Perception
The diffuse and specular components of reflected light are found by

simplifying the rules by which physical light reflects from physical

surfaces. The dependence of these components on the relative position
of the eye , model and light sources greatly improves the reality of a
picture.

The simple reflection model does not perfectly renders a scene. An
example: shadows are unrealistically deep and harsh, to soften these
shadows we add a third light component called ambient light.

With only diffuse and specular reflections, any parts of a surface

that are shadowed from the point source receive no light and so are
drawn black but in real, the scenes around us are always in some soft
nondirectional light. This light arrives by multiple reflections from

various objects in the surroundings. But it would be computationally
very expensive to model this kind of light.
Ambient Sources and Ambient Reflections

To overcome the problem of totally dark shadows we imagine that a

uniform background glow called ambient light exists in the
environment. The ambient light source spreads in all directions
uniformly.

The source is assigned an intensity Ia. Each face in the model is

assigned a value for its ambient reflection coefficient ρd, and the term Ia

ρa is added to the diffuse and specular light that is reaching the eye from

each point P on that face. Ia and ρa are found experimentally.
Too little ambient light makes shadows appear too deep and

harsh., too much makes the picture look washed out and bland.

4.1.5 How to combine Light Contributions

We sum the three light contributions –diffuse, specular and
ambient to form the total amount of light I that reaches the eye from
point P:

I = ambient + diffuse + specular
I= Ia ρa + Id ρd × lambert + Isp ρs × phongf

Where we define the values

lambert = max 0,
 s.m
s m

and phong = max

0,
 h.m

h m

I depends on various source intensities and reflection coefficients
and the relative positions of the point P, the eye and the point light

source.

4.1.6 To Add Color

Colored light can be constructed by adding certain amounts of red,

green and blue light. When dealing with colored sources and surfaces we
calculate each color component individually and simply add them to from
the final color of the reflected light.

CS2401 Computer Graphics Unit IV

7

Ir= Iar ρar + Idr ρdr × lambert + Ispr ρsr × phongf

Ig= Iag ρag + Idg ρdg × lambert + Ispg ρsg × phongf

Ib= Iab ρab + Idb ρdb × lambert + Ispb ρsb × phongf
--------------- (1)

The above equations are applied three times to compute the

red, green and blue components of the reflected light.

The light sources have three types of color : ambient =(Iar,Iag,Iab) ,
diffuse=(Idr,Idg,Idb) and specular=(Ispr,Ispg,Ispb). Usually the diffuse and the
specular light colors are the same. The terms lambert and phongf do not
depends on the color component so they need to be calculated once. To
do this we need to define nine reflection coefficients:

ambient reflection coefficients: ρar , ρag and ρab

diffuse reflection coefficients: ρdr , ρdg and ρdb

specular reflection coefficients: ρsr , ρsg and ρsb

The ambient and diffuse reflection coefficients are based on the
color of the surface itself.
The Color of Specular Light

Specular light is mirrorlike , the color of the specular component

is same as that of the light source.

Example: A specular highlight seen on a glossy red apple when
illuminated by a yellow light is yellow and not red. This is the same for
shiny objects made of plasticlike material.

To create specular highlights for a plastic surface the specular

reflection coefficients ρsr , ρsg and ρsb are set to the same value so that the
reflection coefficients are gray in nature and do not alter the color of the
incident light.

4.1.7 Shading and the Graphics Pipeline

The key idea is that the vertices of a mesh are sent down the

pipeline along with their associated vertex normals, and all shading
calculations are done on vertices.

The above fig. shows a triangle with vertices v0,v1 and v2 being
rendered. Vertex vi has the normal vector mi associated with it. These
quantities are sent down the pipeline with calls such as :

CS2401 Computer Graphics Unit IV

8

glBegin(GL_POLYGON);
for(int i=0 ;i< 3; i++)
{

}
glEnd();

glNormal3f(m[i].x, m[i].y, m[i].z);
glVertex3f(v[i].x, v[i].y, v[i].z);

The call to glNormal3f() sets the “current normal vector” which

is applied to all vertices sent using glVertex3f(). The current normal
remains current until it is changed with another call to glNormal3f().

The vertices are transformed by the modelview matrix, M so

they are then expressed in camera coordinates. The normal vectors are

also transformed. Transforming points of a surface by a matrix M causes
the normal m at any point to become the normal M-Tm on the
transformed surface, where M-T is the transpose of the inverse of M.

All quantities
after the modelview transformation are expressed in camera

coordinates. At this point the shading model equation (1) is applied and a
color is attached to each vertex.

The clipping step is performed in homogenous coordinates.
This may alter some of the vertices. The below figure shows the case

where vertex v1 of a triangle is clipped off and two new vertices a and b
are created. The triangle becomes a quadrilateral. The color at each new

vertices must be computed, since it is needed in the actual rendering
step.

Clipping a polygon against the view volume

CS2401 Computer Graphics Unit IV

9

The vertices are finally passed through the viewport
transformation where they are mapped into the screen coordinates. The
quadrilateral is then rendered.

4.1.8 To Use Light Sources in OpenGL

OpenGL provides a number of functions for setting up and
using light sources, as well as for specifying the surface properties of
materials.
Create a Light Source

In OpenGL we can define upto eight sources, which are

referred through names GL_LIGHT0, GL_LIGHT1 and so on. Each source
has properties and must be enabled. Each property has a default value.
For example, to create a source located at (3,6,5) in the world coordinates

CS2401 Computer Graphics Unit IV

10

GLfloat myLightPosition[]={3.0 , 6.0,5.0,1.0 };
glLightfv(GL_LIGHT0, GL-POSITION, myLightPosition);

glEnable(GL_LIGHTING); //enable lighting in general
glEnable(GL_LIGHT0); //enable source GL_LIGHT0

The array myLightPosition[] specifies the location of the light
source. This position is passed to glLightfv() along with the name
GL_LIGHT0 to attach it to the particular source GL_LIGHT0.

Some sources such as desk lamp are in the scene whereas like
the sun are infinitely remote. OpenGL allows us to create both types by
using homogenous coordinates to specify light position:(x,y,z,1) : a local
light source at the position (x,y,z)
(x,y,z,0) a vector to an infinitely remote light source in the direction (x,y,z)

A local source and an infinitely remote source
The above

fig,. shows a local source positioned at (0,3,3,1)
and a remote source “located” along vector

(3,3,0,0). Infinitely remote light sources are often
called “directional”.

In OpenGL you can assign a different color to three types of
light that a source emits : ambient , diffuse and specular. Arrays are

used to hold the colors emitted by light sources and they are passed to
glLightfv() through the following code:

GLfloat amb0[]={ 0.2 , 0.4, 0.6, 1.0 }; // define some colors
GLfloat diff0[]= { 0.8 ,0.9 , 0.5 ,1.0 };
GLfloat spec0[]= { 1.0 , 0.8 , 1.0, 1.0 };
glLightfv(GL_LIGHT0, GL_AMBIENT, amb0); //attach them to LIGHT0

glLightfv(GL_LIGHT0, GL_DIFFUSE, diff0);
glLightfv(GL_LIGHT0, GL_SPECULAR, spec0);

Colors are specified in RGBA format meaning red, green, blue

and alpha. The alpha value is sometimes used for blending two colors on

the screen. Light sources have various default values. For all sources:
Default ambient= (0,0,0,1); dimmest possible :black

For light source LIGHT0:
Default diffuse= (1,1,1,1) brightest possible:white
Default specular=(1,1,1,1) brightest possible:white

CS2401 Computer Graphics Unit IV

11

Spotlights
Light sources are point sources by default, meaning that they

emit light uniformly in all directions. But OpenGL allows you to make

them into spotlights, so they emit light in a restricted set of directions.
The fig. shows a spotlight aimed in direction d with a “cutoff angle” of α.

Properties of an OpenGL spotlight

No light is seen at points lying outside the cutoff cone. For
vertices such as P, which lie inside the cone, the amount of light
reaching P is attenuated by the factor cosε(β), where β is the angle

between d and a line from the source to P and is the exponent chosen by

the user to give the desired falloff of light with angle.
The parameters for a spotlight are set by using glLightf() to

set a single value and glLightfv() to set a vector:

glLightf(GL_LIGHT0, GL_SPOT_CUTOFF,45.0); //a cutoff angle 45degree
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT,4.0); //ε=4.0
GLfloat dir[]={2.0, 1.0, -4.0}; // the spotlight‟s direction

glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION,dir);

The default values for these parameters are d= (0,0,-1) , α=180 degree

and ε=0, which makes a source an omni directional point source.

OpenGL allows three parameters to be set that specify general

rules for applying the lighting model. These parameters are passed to
variations of the function glLightModel.
The color of global Ambient Light:

The global ambient light is independent of any particular
source. To create this light , specify its color with the statements:

GLfloat amb[]={ 0.2, 0.3, 0.1, 1.0};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT,amb);

This code sets the ambient source to the color (0.2, 0.3, 0.1).

The default value is (0.2, 0.2, 0.2,1.0) so the ambient is always present.

Setting the ambient source to a non-zero value makes object in a scene
visible even if you have not invoked any of the lighting functions.

CS2401 Computer Graphics Unit IV

12

Is the Viewpoint local or remote?
OpenGL computes specular reflection using halfway vector

h= s + v. The true directions s and v are different at each vertex. If the

light source is directional then s is constant but v varies from vertex to
vertex. The rendering speed is increased if v is made constant for all
vertices.

As a default OpenGL uses v =(0,0,1),which points along the
positive z axis in camera coordinates. The true value of v can be
computed by the following statement:

glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

Are both sides of a Polygon Shaded Properly?

Each polygon faces in a model has two sides, inside and
outside surfaces. The vertices of a face are listed in counterclockwise

order as seen from outside the object. The camera can see only the
outside surface of each face. With hidden surfaces removed, the inside

surface of each face is hidden from the eye by some closer face.

In OpenGL

the terms “front faces” and “back faces” are used for “inside” and

“outside”. A face is a front face if its vertices are listed in

counterclockwise order as seen by the eye.
The fig.(a) shows a eye viewing a cube which is modeled using

the counterclockwise order notion. The arrows indicate the order in
which the vertices are passed to OpenGL. For an object that encloses

that some space, all faces that are visible to the eye are front faces, and

CS2401 Computer Graphics Unit IV

13

OpenGL draws them with the correct shading. OpenGL also draws back

faces but they are hidden by closer front faces.
OpenGL’s definition of a front face

Fig(b) shows a box with a face removed. Three of the visible

faces are back faces. By default, OpenGL does not shade these properly.
To do proper shading of back faces we use:

glLightModeli (GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

CS2401 Computer Graphics Unit IV

14

When this statement is executed, OpenGL reverses the normal
vectors of any back face so that they point towards the viewer, and then

it performs shading computations properly. Replacing GL_TRUE with
GL_FALSE will turn off this facility.

Moving Light Sources

Lights can be repositioned by suitable uses of glRotated() and

glTranslated(). The array position, specified by using
glLightfv(GL_LIGHT0,GL_POSITION,position)

is modified by the modelview matrix that is in effect at the time glLightfv()

is called. To modify the position of the light with transformations and
independently move the camera as in the following code:

void display()
{

GLfloat position[]={2,1,3,1}; //initial light position
clear the color and depth buffers

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glPushMatrix();

glRotated(….); //move the light

glTranslated(…);

glLightfv(GL_LIGHT0,GL_POSITION,position);
glPopMatrix();

gluLookAt(….); //set the camera position

draw the object
glutSwapBuffers();

}
To move the light source with camera we use the following

code:
GLfloat pos[]={0,0,0,1};

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glLightfv(GL_LIGHT0,GL_POSITION,position); //light at (0,0,0)
gluLookAt(….); //move the light and the camera
draw the object

This code establishes the light to be positoned at the eye and
the light moves with the camera.

4.1.9 Working With Material Properties In OpenGL

The effect of a light source can be seen only when light reflects
off an object‟s surface. OpenGL provides methods for specifying the

various reflection coefficients. The coefficients are set with variations of

CS2401 Computer Graphics Unit IV

15

the function glMaterial and they can be specified individually for front
and back faces. The code:

Glfloat myDiffuse[]={0.8, 0.2, 0.0, 1.0 };

glMaterialfv(GL_FRONT,GL_DIFFUSE,myDiffuse);
sets the diffuse reflection coefficients(ρdr , ρdg ,ρdb) equal to (0.8,

0.2, 0.0) for all specified front faces. The first parameter of glMaterialfv()

can take the following values:

GL_FRONT:Set the reflection coefficient for front faces.
GL_BACK:Set the reflection coefficient for back faces.

GL_FRONT_AND_BACK:Set the reflection coefficient for both front
and back faces.

The second parameter can take the following values: GL_AMBIENT:

Set the ambient reflection coefficients. GL_DIFFUSE: Set the

diffuse reflection coefficients. GL_SPECULAR: Set the
specular reflection coefficients.
GL_AMBIENT_AND_DIFFUSE: Set both the ambient and the

diffuse reflection coefficients to the same values.
GL_EMISSION: Set the emissive color of the surface.

The emissive color of a face causes it to “glow” in the specified

color, independently of any light source.

4.1.10 Shading of Scenes specified by SDL

The scene description language SDL supports the loading of
material properties into objects so that they can be shaded properly.

light 3 4 5 .8 .8 ! bright white light at (3,4,5)
background 1 1 1 ! white background
globalAmbient .2 .2 .2 ! a dark gray global ambient light
ambient .2 .6 0
diffuse .8 .2 1 ! red material

specular 1 1 1 ! bright specular spots – the color of the source
specularExponent 20 !set the phong exponent

scale 4 4 4 sphere

The code above describes a scene containing a sphere with the

following material properties:
o ambient reflection coefficients: (ρar , ρag , ρab)= (.2, 0.6, 0);
o diffuse reflection coefficients: (ρdr , ρdg , ρdb)= (0.8,0.2,1.0);
o specular reflection coefficients: (ρsr , ρsg , ρsb) = (1.0,1.0,1.0);
o Phong exponent f = 20.

The light source is given a color of (0.8,0.8,0.8) for both its
diffuse and specular component. The global ambient term
(Iar , Iag , Iab)= (0.2, 0.2, 0.2).

The current material properties are loaded into each object‟s mtrl

field at the time the object is created.

CS2401 Computer Graphics Unit IV

16

When an object is drawn using drawOpenGL(), it first passes its
material properties to OpenGL, so that at the moment the object is

actually drawn, OpenGL has those properties in its current state.

4.2 FLAT SHADING AND SMOOTH SHADING

Different objects require different shading effects. In the

modeling process we attached a normal vector to each vertex of each
face. If a certain face is to appear as a distinct polygon, we attach the

same normal vector to all of its vertices; the normal vector chosen is that
indicating the direction normal to the plane of the face. If the face is
approximate an underlying surface, we attach to each vertex the normal

to the underlying surface at that plane.
The information obtained from the normal vector at each

vertex is used to perform different kinds of shading. The main distinction

is between a shading method that accentuates the individual polygons

(flat shading) and a method that blends the faces to de-emphasize the
edges between them (smooth shading).

In both kinds of shading, the vertices are passed down the
graphics pipeline, shading calculations are performed to attach a color to
each vertex and the vertices are converted to screen coordinates and the
face is “painted” pixel by pixel with the appropriate color.

Painting a Face

A face is colored using a polygon fill routine. A polygon routine

is sometimes called as a tiler because it moves over a polygon pixel by
pixel, coloring each pixel. The pixels in a polygon are visited in a regular
order usually from bottom to top of the polygon and from left to right.

Polygons intersect are convex. A tiler designed to fill only

convex polygons can be very efficient because at each scan line there is
unbroken run of pixels that lie inside the polygon. OpenGL uses this
property and always fills convex polygons correctly whereas nonconvex

polygons are not filled correctly.
A convex quadrilateral whose face is filled with color

CS2401 Computer Graphics Unit IV

17

The screen coordinates of each vertex is noted. The lowest and

highest points on the face are ybott and ytop. The tiler first fills in the row

at y= ybott , then at ybott + 1, etc. At each scan line ys, there is a leftmost

pixel xleft and a rightmost pixel xright. The toler moves from xleft to xright,
placing the desired color in each pixel. The tiler is implemented as a
simple double loop:

for (int y= ybott ; y<= ytop; y++) // for each scan line
{

find xleft and xright

for(int x= xleft ; x<= xright; x++) // fill across the scan line
{

find the color c for this pixel
put c into the pixel at (x,y)

}
}

The main difference between flat and smooth shading is the
manner in which the color c is determined in each pixel.
4.2.1 Flat Shading

When a face is flat, like a roof and the light sources are distant

, the diffuse light component varies little over different points on the roof.
In such cases we use the same color for every pixel covered by the face.

OpenGL offers a rendering mode in which the entire face is
drawn with the same color. In this mode, although a color is passed

down the pipeline as part of each vertex of the face, the painting

algorithm uses only one color value. So the command find the color c
for this pixel is not inside the loops, but appears before the loop, setting
c to the color of one of the vertices.

Flat shading is invoked in OpenGL using the command
glShadeModel(GL_FLAT);

When objects are rendered using flat shading. The individual

faces are clearly visible on both sides. Edges between faces actually
appear more pronounced than they would on an actual physical object
due to a phenomenon in the eye known as lateral inhibition. When

there is a discontinuity across an object the eye manufactures a Mach
Band at the discontinuity and a vivid edge is seen.

Specular highlights are rendered poorly with flat shading
because the entire face is filled with a color that was computed at only

one vertex.
4.2.2 Smooth Shading

Smooth shading attempts to de-emphasize edges between
faces by computing colors at more points on each face. The two types of
smooth shading

Gouraud shading

Phong shading

CS2401 Computer Graphics Unit IV

18

Gouraud Shading
Gouraud shading computes a different value of c for each

pixel. For the scan line ys in the fig. , it finds the color at the leftmost

pixel, colorleft, by linear interpolation of the colors at the top and bottom
of the left edge of the polygon. For the same scan line the color at the

top is color4, and that at the bottom is color1, so colorleft will be
calculated as

colorleft = lerp(color1, color4,f), ----------(1)
where the fraction

varies between 0 and 1 as ys varies from ybott to y4. The eq(1) involves
three calculations since each color quantity has a red, green and blue
component.

Colorright is found by interpolating the colors at the top and

bottom of the right edge. The tiler then fills across the scan line , linearly

interpolating between colorleft and colorright to obtain the color at pixel x:

C(x) = lerp

To increase the efficiency of the fill, this color is computed

incrementally at each pixel . that is there is a constant difference

between c(x+1) and c(x) so that

C(x+1)=c(x)+

The incremented is calculated only once outside of the inner most
loop. The code:

for (int y= ybott; y<=ytop ; y++) //for each scan line
{

find xleft and xright

find colorleft and colorright

colorinc=(colorright - colorleft) / (xright - xleft);

for(int x= xleft, c=colorleft; x<=xright; x++, c+=colorinc)
put c into the pixel at (x,y)

}
Computationally Gouraud shading is more expensive than

flat shading. Gouraud shading is established in OpenGL using the
function:

glShadeModel(GL_SMOOTH);
When a sphere and a bucky ball are rendered using Gouraud

shading, the bucky ball looks the same as it was rendered with flat
shading because the same color is associated with each vertex of a face.

But the sphere looks smoother, as there are no abrupt jumps in color
between the neighboring faces and the edges of the faces are gone ,
replaced by a smoothly varying colors across the object.

CS2401 Computer Graphics Unit IV

19

Continuity of color across a polygonal edge

Fig.(a) shows two faces F and F‟ that share an edge. In

rendering F, the colors CL and CR are used and in rendering F‟, the colors

C‟L and C‟R are used. But since CR equals C‟L, there is no abrupt change

in color at the edge along the scan line.

Fig.(b) shows how Gouraud shading reveals the underlying

surface. The polygonal surface is shown in cross section with vertices V1

and V2. The imaginary smooth surface is also represented. Properly

computed vertex normals m1,m2 point perpendicularly to this imaginary
surface so that the normal for correct shading will be used at each vertex
and the color there by found will be correct. The color is then made to

vary smoothly between the vertices.
Gouraud shading does not picture highlights well because

colors are found by interpolation. Therefore in Gouraud shading the
specular component of intensity is suppressed.

Phong Shading

Highlights are better reproduced using Phong Shading.
Greater realism can be achieved with regard to highlights on shiny

objects by a better approximation of the normal vector to the face at each
pixel this type of shading is called as Phong Shading

When computing Phong Shading we find the normal vector at

each point on the face of the object and we apply the shading model

there to fig the color we compute the normal vector at each pixel by
interpolating the normal vectors at the vertices of the polygon.

The fig shows a projected face with the normal vectors m1, m2,

m3 and m4 indicated at the four vertices.

CS2401 Computer Graphics Unit IV

20

Interpolating normals

For the scan line ys, the vectors m left and m right are found by

linear interpolation

This interpolated vector must be normalized to unit length

before it is used in the shading formula once m left and m right are known
they are interpolated to form a normal vector at each x along the scan
line that vector is used in the shading calculation to form the color at the

pixel.
In Phong Shading the direction of the normal vector varies

smoothly from point to point and more closely approximates that of an
underlying smooth surface the production of specular highlights are good

and more realistic renderings produced.
Drawbacks of Phong Shading

Relatively slow in speed

More computation is required per pixel

Note: OpenGL does not support Phong Shading

4.3 Adding texture to faces

The realism of an image is greatly enhanced by adding surface
texture to various faces of a mesh object.

The basic technique begins with some texture function,

texture(s,t) in texture space , which has two parameters s and t. The
function texture(s,t) produces a color or intensity value for each value of

s and t between 0(dark)and 1(light). The two common sources of textures
are

Bitmap Textures

Procedural Textures

CS2401 Computer Graphics Unit IV

21

Bitmap Textures
Textures are formed from bitmap representations of images,

such as digitized photo. Such a representation consists of an array

txtr[c][r] of color values. If the array has C columns and R rows, the
indices c and r vary from 0 to C-1 and R-1 resp.,. The function
texture(s,t) accesses samples in the array as in the code:

Color3 texture (float s, float t)
{

return txtr[(int) (s * C)][(int) (t * R)];
}

Where Color3 holds an RGB triple.
Example: If R=400 and C=600, then the texture (0.261, 0.783)

evaluates to txtr[156][313]. Note that a variation in s from 0 to 1

encompasses 600 pixels, the variation in t encompasses 400 pixels. To
avoid distortion during rendering , this texture must be mapped onto a

rectangle with aspect ratio 6/4.

Procedural Textures

Textures are defined by a mathematical function or procedure.
For example a spherical shape could be generated by a function:

float fakesphere(float s, float t)
{

float r= sqrt((s-0.5) * (s-0.5)+ (t-0.5) * (t-0.5));
if (r < 0.3) return 1-r/0.3; //sphere intensity
else return 0.2; //dark background

}

This function varies from 1(white) at the center to 0 (black) at
the edges of the sphere.
4.3.1 Painting the Textures onto a Flat Surface

Texture space is flat so it is simple to paste texture on a flat
surface.

Mapping texture onto a planar polygon

CS2401 Computer Graphics Unit IV

22

The fig. shows a texture image mapped to a portion of a planar
polygon,F. We need to specify how to associate points on the texture with

points on F.
In OpenGL we use the function glTexCoord2f() to associate a

point in texture space Pi=(si,ti) with each vertex Vi of the face. the
function glTexCoord2f(s,t)sets the current texture coordinate to (s,y). All
calls to glVertex3f() is called after a call to glTexCoord2f(), so each vertex

gets a new pair of texture coordinates.
Example to define a quadrilateral face and to position a

texture on it, we send OpenGL four texture coordinates and four 3D

points, as follows:

glEnd();
Mapping a Square to a Rectangle

CS2401 Computer Graphics Unit IV

23

The fig. shows the a case where the four corners of the texture
square are associated with the four corners of a rectangle. In this
example, the texture is a 640-by-480 pixel bit map and it is pasted onto

a rectangle with aspect ratio 640/480, so it appears without distortion.

Producing repeated textures

CS2401 Computer Graphics Unit IV

24

The fig. shows the use of texture coordinates , that tile the
texture, making it to repeat. To do this some texture coordinates that lie

outside the interval[0,1] are used. When rendering routine encounters a
value of s and t outside the unit square, such as s=2.67, it ignores the
integral part and uses only the fractional part 0.67. A point on a face

that requires (s,t)=(2.6,3.77) is textured with texture (0.6,0.77).
The points inside F will be filled with texture values lying

inside P, by finding the internal coordinate values (s,t) through the use of
interpolation.

Adding Texture Coordinates to Mesh Objects

A mesh objects has three lists

The vertex list

The normal vector list

The face list
We need to add texture coordinate to this list, which stores

the coordinates (si, ti) to be associated with various vertices. We can add
an array of elements of the type

class TxtrCoord(public : float s,t;);

to hold all of the coordinate pairs of the mesh. The two important
techniques to treat texture for an object are:

1. The mesh object consists of a small number of flat faces, and

a different texture is to be applied to each. Each face has only a
sigle normal vector, but its own list of texture coordinates. So the

following data are associated with each face:

the number of vertices in the face.

the index of normal vector to the face.

a list of indices of the vertices.

a list of indices of the texture coordinates.

2. The mesh represents a smooth underlying object and a single

texture is to wrapped around it. Each vertex has associated with it
a specific normal vector and a particular texture coordinate pair. A
single index into the vertex, normal vector and texture lists is used

for each vertex. The data associated with the face are:

the number of vertices in the face.

list of indices of the vertices.

4.3.2 Rendering the Texture

Rendering texture in a face F is similar to Gouraud Shading. It

proceeds across the face pixel by pixel. For each pixel it must determine
the corresponding texture coordinates (s,t), access the texture and set
the pixel to the proper texture color. Finding the coordinated (s,t) should

be done carefully.

CS2401 Computer Graphics Unit IV

25

Rendering a face in a camera snapshot

The fig shows

the camera taking a snapshot of a face F with texture pasted onto it

and the rendering in progress. The scan line y is being filled from xleft

to xright. For each x along this scan line, we compute the correct

position on the face and from that , obtain the correct position (s*, t*)
within the texture.

Incremental calculation of texture coordinates

CS2401 Computer Graphics Unit IV

26

We compute (sleft,tleft) and (sright,tright) for each scan line in a rapid
incremental fashion and to interpolate between these values, moving
across these scan lines. Linear interpolation produces some distortion in

the texture. This distortion is disturbing in an animation when the
polygon is rotating. Correct interpolation produces an texture as it

should be. In an animation this texture would appear to be firmly
attached to the moving or rotating face.

CS2401 Computer Graphics Unit IV

27

Lines in one space map to lines in another

Affine and projective transformations preserve straightness, so line

Le in eye space projects to line Ls in screen space, and similarly the texels

we wish to draw on line Ls lie along the line Lt in texture spaces, which

maps to Le.
The question is : if we move in equal steps across Ls on the screen,

how should we step across texels along Lt in texture space?
How does motion along corresponding lines operate?

The fig. shows a line AB in 3D being transformed into the line ab in
3D by the matrix M. A maps to

 a, B maps to b. Consider the point R(g)

that lies a fraction g of the way between A and B. This point maps to
some point r(f) that lies a fraction f of the way from a to b. The fractions f

and g are not the same. The question is, As f varies from 0 to 1, how
exactly does g vary? How does motion along ab correspond to motion
along AB?

Rendering Images Incrementally

We now find the proper texture coordinates (s,t) at each point on
the face being rendered.

Rendering the texture on a face

CS2401 Computer Graphics Unit IV

28

The fig. shows the face of a barn. The left edge of the projected face

has endpoints a and b. The face extends from xleft to xright across scan line

y. We need to find appropriate texture coordinates (sleft, tleft) and

(sright, tright) to attach to xleft and xright, which we can then interpolate
across the scan line

Consider finding sleft(y), the value of sleft at scan line y.We know
that texture coordinate sA is attached to point a and sB is attached to
point b. If the scan line at y is a fraction f of the way between ybott and
ytop so that f=(y – ybott)/ (ytop – ybott), the proper texture coordinate to use
is

and similarly for tleft.

Implications for the Graphics Pipeline

The shows a refinement of the pipeline. Each vertex V is

associated with a texture pair (s,t) and a vertex normal. The vertex is

transformed by the modelview matrix, producing vertex A=(A1, A2, A3)
and a normal n‟ in eye coordinates.

Shading calculations are done using this normal, producing the

color c=(cr, cg, cb). The texture coordinates (sA, tA) are attached to A.

Vertex A then goes perspective transformation, producing a =(a1,a2,

a3,a4). The texture coordinates and color c are not altered.
Next clipping against the view volume is done. Clipping can cause

some vertices to disappear and some vertices to be formed. When a

vertex D is created, we determine its position (d1, d2, d3, d4) and attach it
to appropriate color and texture point. After clipping the face still
consists of a number of verices, to each of which is attached a color and

a texture point. For a point A, the information is stored in the array (a1,

a2, a3, a4, sA, tA, c,1). A final term of 1 has been appended; this is used in
the next step.

CS2401 Computer Graphics Unit IV

29

Perspective division is done, we need hyberbolic interpolation

so we divide every term in the array that we wish to interpolate

hyperbolically by a4, to obtain the array (x, y, z, 1, sA/a4, t4/a4, c, 1/a4).

The first three components of the array (x, y, z)=(a1/a4, a2/a4, a3/a4).
Finally, the rendering routine receives the array (x, y, z, 1, sA/a4,

t4/a4, c, 1/a4) for each vertex of the face to be rendered.

4.3.3 What does the texture Modulate?

There are three methods to apply the values in the texture map in
the rendering calculations
Creating a Glowing Object

This is the simplest method. The visibility intensity I is set equal to

the texture value at each spot:
I=texture(s,t)

The object then appears to emit light or glow. Lower texture values

emit less light and higher texture values emit more light. No additional

lighting calculations are needed. OpenGL does this type of texturing
using

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
GL_REPLACE);

Painting the Texture by Modulating the Reflection Coefficient

The color of an object is the color of its diffuse light component.

Therefore we can make the texture appear to be painted onto the surface

by varying the diffuse reflection coefficient. The texture function
modulates the value of the reflection coefficient from point to point. We
replace eq(1) with

I= texture(s,t) [Ia ρa + Id ρd × lambert]+ Isp ρs × phongf

For appropriate values of s and t. Phong specular reflections are
the color of the source and not the object so highlights do not depend on
the texture. OpenGL does this type of texturing using

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
GL_MODULATE);

Simulating Roughness by Bump Mapping

Bump mapping is a technique developed by Blinn, to give a
surface a wrinkled or dimpled appearance without struggling to model

each dimple itself. One problem associated with applying bump mapping
to a surface like a teapot is that since the model does not contain the
dimples , the object‟s outline caused by a shadow does not show dimples

and it is smooth along each face.

The goal is to make a scalar function texture(s,t) disturb the
normal vector at each spot in a controlled fashion. This disturbance
should depend only on the shape of the surface and the texture.

CS2401 Computer Graphics Unit IV

30

On the nature of bump mapping

The fig. shows in cross section how bump mapping works.
Suppose the surface is represented parametrically by the function P(u,v)
and has unit normal vector m(u,v). Suppose further that the 3D point

at(u*,v*) corresponds to texture at (u*,v*).
Blinn‟s method simulates perturbing the position of the true

surface in the direction of the normal vector by an amount proportional

to the texture (u*,v*);that is
P‟(u*,V*) = P(u*,v*)+texture(u*,v*)m(u*,v*).

Figure(a) shows how this techniques adds wrinkles to the surface. The
disturbed surface has a new normal vector m‟(u*,v*)at each point. The

idea is to use this disturbed normal as if it were “attached” to the original

undisturbed surface at each point, as shown in figure (b). Blinn has
demonstrated that a good approximation to m‟(u*,v*) is given by

m‟(u*,v*) =m(u*,v*)+d(u*,v*)

Where the perturbation vector d is given by
d(u*,v*) = (m X pv) textureu – (m X pu) texturev.

In which textureu, and texturev are partial derivatives of the texture
function with respect to u and v respectively. Further pu and pv are
partial derivative of P(u,v) with respect to u and v, respectively. all
functions are evaluated at(u*,V*).Note that the perturbation function
depends only on the partial derivatives of the texture(),not on
texture()itself.
4.3.4 Reflection Mapping

This technique is used to improve the realism of pictures ,
particularly animations. The basic idea is to see reflections in an object
that suggest the world surrounding that object.

The two types of reflection mapping are

 Chrome mapping
A rough and blurry image that suggests the surrounding

environment is reflected in the object as you would see in an object
coated with chrome.

 Environment mapping

A recognizable image of the surrounding environment is seen

reflected in the object. Valuable visual clues are got from such
reflections particularly when the object is moving.

CS2401 Computer Graphics Unit IV

31

4.4 ADDING SHADOWS OF OBJECTS
Shadows make an image more realistic. The way one object casts a

shadow on another object gives important visual clues as to how the two

objects are positioned with respect to each other. Shadows conveys lot of
information as such, you are getting a second look at the object from the
view point of the light source. There are two methods for computing

shadows:

Shadows as Texture

Creating shadows with the use of a shadow buffer

4.4.1 Shadows as Texture
The technique of “painting“ shadows as a texture works for

shadows that are cast onto a flat surface by a point light source. The
problem is to compute the shape of the shadow that is cast.

Computing the shape of a shadow

Fig(a) shows a box casting a shadow onto the floor. The shape of the
shadow is determined by the projections of each of the faces of the box
onto the plane of the floor, using the light source as the center of

projection.

Fig(b) shows the superposed projections of two of the faces. The

CS2401 Computer Graphics Unit IV

32

top faces projects to top‟ and the front face to front‟.

This provides the key to drawing the shadow. After drawing the

plane by the use of ambient, diffuse and specular light contributions,
draw the six projections of the box‟s faces on the plane, using only the

ambient light. This technique will draw the shadow in the right shape

and color. Finally draw the box.
Building the “Projected” Face

To make the new face F‟ produced by F, we project each of the

vertices of F onto the plane. Suppose that the plane passes through point
A and has a normal vector n. Consider projecting vertex V, producing V‟.

V‟ is the point where the ray from source at S through V hits the plane,

this point is

CS2401 Computer Graphics Unit IV

33

S

S
S (S

V ' V)
n.(A)
n.(V)

4.4.2 Creating Shadows with the use of a Shadow buffer
This method uses a variant of the depth buffer that performs the

removal of hidden surfaces. An auxiliary second depth buffer called a
shadow buffer is used for each light source. This requires lot of memory.

This method is based on the principle that any points in a scene
that are hidden from the light source must be in shadow. If no object lies
between a point and the light source, the point is not in shadow.

The shadow buffer contains a depth picture of the scene from the
point of view of the light source. Each of the elements of the buffer

records the distance from the source to the closest object in the
associated direction. Rendering is done in two stages:
1) Loading the shadow buffer

The

shadow buffer is initialized with 1.0 in each element, the largest
pseudodepth possible. Then through a camera positioned at the light

source, each of the scene is rasterized but only the pseudodepth of the
point on the face is tested. Each element of the shadow buffer keeps
track of the smallest pseudodepth seen so far.

Using the shadow buffer

CS2401 Computer Graphics Unit IV

34

The fig. shows a scene being viewed by the usual eye camera

and a source camera located at the light source. Suppose that point P is
on the ray from the source through the shadow buffer pixel d[i][j] and
that point B on the pyramid is also on this ray. If the pyramid is present

d[i][j] contains the pseudodepth to B; if the pyramid happens to be
absent d[i][j] contains the pseudodepth to P.

The shadow buffer calculation is independent of the eye position,

so in an animation in which only the eye moves, the shadow buffer is
loaded only once. The shadow buffer must be recalculated whenever the
objects move relative to the light source.

2) Rendering the scene
Each face in the scene is rendered using the eye camera.

Suppose the eye camera sees point P through pixel p[c][r]. When
rendering p[c][r], we need to find

CS2401 Computer Graphics Unit IV

35

the pseudodepth D from the source to p

the index location [i][j] in the shadow buffer that is to be tested
and

 the value d[i][j] stored in the shadow buffer
If d[i][j] is less than D, the point P is in the shadow and p[c][r] is

set using only ambient light. Otherwise P is not in shadow and p[c][r] is
set using ambient, diffuse and specular light.

4.5 BUILDING A CAMERA IN A PROGRAM

To have a finite control over camera movements, we create and
manipulate our own camera in a program. After each change to this
camera is made, the camera tells OpenGL what the new camera is.

We create a Camera class that does all things a camera does. In
a program we create a Camera object called cam, and adjust it with
functions such as the following:

cam.set(eye, look, up); // initialize the camera

cam.slide(-1, 0, -2); //slide the camera forward and to the left
cam.roll(30); // roll it through 30 degree
cam.yaw(20); // yaw it through 20 degree

The Camera class definition:

class Camera {

private:

Point3 eye;
Vector3 u, v, n;
double viewAngle, aspect, nearDist, farDist; //view volume shape
void setModelViewMatrix(); //tell OpenGL where the camera is

public:

};

Camera(); //default constructor
void set(Point3 eye, Point3 look, Vector3 up); //like gluLookAt()

void roll(float, angle); //roll it
void pitch(float, angle); // increase the pitch
void yaw(float, angle); //yaw it

void slide(float delU, float delV, float delN); //slide it
void setShape(float vAng, float asp, float nearD, float farD);

The Camera class definition contains fields for eye and the
directions u, v and n. Point3 and Vector3 are the basic data types. It also

has fields that describe the shape of the view volume: viewAngle, aspect,
nearDist and farDist.

CS2401 Computer Graphics Unit IV

36

The utility routine setModelViewMatrix() communicates the
modelview matrix to OpenGL. It is used only by member functions of the
class and needs to be called after each change is made to the camera‟s

position. The matrix

u x u y u z d x

V
vx v y vz d y

nx n y nz d z

0 0 0 0

This matrix V accounts for the transformation of world points

into camera coordinates. The utility routine computes the matrix V on
the basis of current values of eye, u ,v and n and loads the matrix
directly into the modelview matrix using glLoadMatrixf().

The utility routines set() and setModelViewMatrix()

void Camera :: setModelViewMatrix(void)

{ //load modelview matrix with existing camera values
float m[16];
Vector3 eVec(eye.x, eye.y, eye.z); //a vector version of eye

m[0]= u.x ; m[4]= u.y ; m[8]= u.z ; m[12]= -eVec.dot(u);

m[1]= v.x ; m[5]= v.y ; m[9]= v.z ; m[13]= -eVec.dot(v);
m[2]= n.x ; m[6]= n.y ; m[10]= y.z ; m[14]= -eVec.dot(n);
m[3]= 0 ; m[7]= 0 ; m[11]= 0 ; m[15]= 1.0 ;

glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(m); //load OpenGL‟s modelview matrix

}
void Camera :: set (Point3 eye, Point3 look, Vector3 up)

{ // Create a modelview matrix and send it to OpenGL
eye.set(Eye); // store the given eye position
n.set(eye.x – look.x, eye.y – look.y, eye.z – look.z); // make n

u.set(up.cross(n)); //make u= up X n

n.normalize(); // make them unit length
u.normalize();
v.set(n.cross(u)); // make v= n X u
setModelViewMatrix(); // tell OpenGL

}

The method set() acts like gluLookAt(): It uses the values of eye,

look and up to compute u, v and n according to equation:
n= eye – look,

u = up X n
and
v = n X u. It places this information in the camera‟s fields and

communicates it to OpenGL.

CS2401 Computer Graphics Unit IV

37

The routine setShape() is simple. It puts the four argument
values into the appropriate camera fields and then calls

gluPerspective(viewangle, aspect, nearDist, farDist)
along with

glMatrixMode(GL_PROJECTION)
and

glLoadIdentity()
to set the projection matrix.

The central camera functions are slide(), roll(), yaw() and pitch(),
which makes relative changes to the camera‟s position and orientation.

4.5.1 Flying the camera
The user flies the camera through a scene interactively by

pressing keys or clicking the mouse. For instance,

pressing u will slide the camera up some amount

pressing y will yaw the camera to the left

pressing f will slide the camera forward
The user can see different views of the scene and then changes

the camera to a better view and produce a picture. Or the user can fly
around a scene taking different snapshots. If the snapshots are stored
and then played back, an animation is produced of the camera flying
around the scene.

There are six degrees of freedom for adjusting a camera: It can be

slid in three dimensions and it can be rotated about any of three

coordinate axes.
Sliding the Camera

Sliding the camera means to move it along one of its own axes
that is, in the u, v and n direction without rotating it. Since the camera is
looking along the negative n axis, movement along n is forward or back.
Movement along u is left or right and along v is up or down.

To move the camera a distance D along its u axis, set eye to eye +
Du. For convenience ,we can combine the three possible slides in a single

function:
slide(delU, delV, delN)

slides the camera amount delU along u, delV along v and delN along n.

The code is as follows:

void Camera : : slide(float delU, float delV, float delN)
{

eye.x += delU * u.x + delV * v.x + delN * n.x;
eye.y += delU * u.y + delV * v.y + delN * n.y;
eye.z += delU * u.z + delV * v.z + delN * n.z;

setModelViewMatrix();

}

CS2401 Computer Graphics Unit IV

38

Rotating the Camera
Roll, pitch and yaw the camera , involves a rotation of the camera

about one of its own axes.
To roll the camera we rotate it about its own n-axis. This means

that both the directions u and v must be rotated as shown in fig.
Rolling the camera

Two new axes are formed u‟ and v‟ that lie in the same plane as u

and v, and have been rotated through the angle α radians.

We form u‟ as the appropriate linear combination of u and v and

similarly for v‟:

u‟ = cos (α)u + sin(α)v ;

v‟ = -sin (α)u + cos(α)v
The new axes u‟ and v‟ then replace u and v respectively in the

camera. The angles are measured in degrees.
Implementation of roll()

void Camera :: roll (float angle)
{ // roll the camera through angle degrees

float cs = cos (3.14159265/180 * angle); float
sn = sin (3.14159265/180 * angle); Vector3 t =
u; //remember old u
u.set(cs * t.x – sn * v.x , cs * t.y – sn * v.y, cs * t.z – sn * v.z);

v.set(sn * t.x + cs * v.x , sn * t.y + cs * v.y, sn * t.z + cs * v.z);

setModelViewMatrix();
}
Implementation of pitch()

void Camera :: pitch (float angle)
{ // pitch the camera through angle degrees around U

float cs = cos(3.14159265/180 * angle);
float sn = sin(3.14159265/180 * angle);
Vector3 t(v); // remember old v
v.set(cs*t.x - sn*n.x, cs*t.y - sn*n.y, cs*t.z - sn*n.z);

n.set(sn*t.x + cs*n.x, sn*t.y + cs*n.y, sn*t.z + cs*n.z);
setModelViewMatrix();

}

CS2401 Computer Graphics Unit IV

39

Implementation of yaw()

void Camera :: yaw (float angle)
{ // yaw the camera through angle degrees around V

float cs = cos(3.14159265/180 * angle);
float sn = sin(3.14159265/180 * angle);
Vector3 t(n); // remember old v

n.set(cs*t.x - sn*u.x, cs*t.y - sn*u.y, cs*t.z - sn*u.z);
u.set(sn*t.x + cs*u.x, sn*t.y + cs*u.y, sn*t.z + cs*u.z);
setModelViewMatrix();

}

The Camera class can be used with OpenGL to fly a camera

through a scene. The scene consists of only a teapot. The camera is a

global object and is set up in main(). When a key is pressed
myKeyboard() is called and the camera is slid or rotated, depending on
which key was pressed.

For instance, if P is pressed, the camera is pitched up by 1

degree. If CTRL F is pressed , the camera is pitched down by 1 degree.
After the keystroke has been processed, glutPostRedisplay() causes
myDisplay() to be called again to draw the new picture.

This application uses double buffering to produce a fast and
smooth transition between one picture and the next. Two memory buffers

are used to store the pictures that are generated. The display switches
from showing one buffer to showing the other under the control of

glutSwapBuffers().

Application to fly a camera around a teapot

#include “camera.h”

Camera cam; //global camera object

//---------------------- myKeyboard-------------------------------
void myKeyboard(unsigned char key, int x, int y)
{

switch(key)
{

//controls for the camera
case „F‟: //slide camera forward

cam.slide(0, 0, 0.2);
break;

case „F‟-64: //slide camera back
cam.slide(0, 0,-0.2);
break;

case „P‟:
cam.pitch(-1.0);
break;

CS2401 Computer Graphics Unit IV

40

case „P‟-64:

cam.pitch(1.0);

break;
//add roll and yaw controls
}

glutPostRedisplay(); //draw it again
}

//--------------------------myDisplay------------------------------
void myDisplay(void)
{

glClear(GL_COLOR_BUFFER_BIT |GL_DEPTH_BUFFER_BIT);
glutWireTeapot(1,0); // draw the teapot
glFlush();
glutSwapBuffers(); //display the screen just made

}

//--------------------------main----------------------------
void main(int argc, char **argv)
{

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); //double buffering

glutInitWindowSize(640, 480);

glutInitWindowPosition(50, 50);
glutCreateWindow(“fly a camera around a teapot”);

glutKeyboardFunc(myKeyboard);
glutDisplayFunc(myDisplay);

glClearColor(1.0f, 1.0f, 1.0f, 1.0f); //background is white
glColor3f(0.0f, 0.0f, 0.0f); //set color of stuff
glViewport(0, 0, 640, 480);

cam.set(4, 4, 4, 0, 0, 0, 0, 1, 0); //make the initial camera
cam.setShape(30.0f, 64.0f/48.0f, 0.5f, 50.0f);
glutMainLoop();

}

CS2401 Computer Graphics Unit IV

34

CS2401 COMPUTER GRAPHICS UNIT V

1

UNIT V FRACTALS
Fractals and Self similarity – Peano curves – Creating image by

iterated functions –Mandelbrot sets – Julia Sets – Random Fractals –

Overview of Ray Tracing –Intersecting rays with other primitives – Adding
Surface texture – Reflections and Transparency – Boolean operations on
Objects

Computers are good at repetition. In addition, the high precision with
which modern computers can do calculations allows an algorithm to take
closer look at an object, to get greater levels of details.

Computer graphics can produce pictures of things that do not even

exist in nature or perhaps could never exist. We will study the inherent

finiteness of any computer generated picture. It has finite resolution and
finite size, and it must be made in finite amount of time. The pictures we
make can only be approximations, and the observer of such a picture

uses it just as a hint of what the underlying object really looks like.

5.1 FRACTALS AND SELF-SIMILARITY

Many of the curves and pictures have a particularly important
property called self-similar. This means that they appear the same at

every scale: No matter how much one enlarges a picture of the curve, it
has the same level of detail.

Some curves are exactly self-similar, whereby if a region is
enlarged the enlargement looks exactly like the original.

Other curves are statistically self-similar, such that the wiggles

and irregularities in the curve are the same “on the average”, no matter
how many times the picture is enlarged. Example: Coastline.

5.1.1 Successive Refinement of Curves

A complex curve can be fashioned recursively by repeatedly
“refining” a simple curve. The simplest example is the Koch curve,

discovered in1904 by the Swedish mathematician Helge von Koch. The
curve produces an infinitely long line within a region of finite area.

Successive generations of the Koch curve are denoted K0, K1,
K2….The zeroth generation shape K0 is a horizontal line of length unity.

Two generations of the Koch curve

To create K1 , divide the line K0 into three equal parts and replace

the middle section with a triangular bump having sides of length 1/3.

CS2401 COMPUTER GRAPHICS UNIT V

2

The total length of the line is 4/3. The second order curve K2, is formed
by building a bump on each of the four line segments of K1.
To form Kn+1 from Kn:

Subdivide each segment of Kn into three equal parts and replace
the middle part with a bump in the shape of an equilateral triangle.

In this process each segment is increased in length by a factor of
4/3, so the total length of the curve is 4/3 larger than that of the

previous generation. Thus Ki has total length of (4/3)i , which increases
as i increases. As i tends to infinity, the length of the curve becomes

infinite.

The first few generations of the Koch snowflake

The Koch snowflake of the above figure is formed out of three Koch

curves joined together. The perimeter of the ith generations shape Si is
three times length of a Koch curve and so is 3(4/3)i , which grows forever

as i increases. But the area inside the Koch snowflake grows quite

slowly. So the edge of the
Koch snowflake gets rougher and rougher and longer and longer, but
the area remains bounded.

Koch snowflake s3, s4 and s5

The Koch curve Kn is self-similar in the following ways: Place

a small window about some portion of Kn, and observe its ragged shape.
Choose a window a billion times smaller and observe its shape. If n is
very large, the curve appears to be have same shape and roughness.

Even if the portion is enlarged another billion times, the shape would be
the same.

5.1.2 Drawing Koch Curves and Snowflakes

The Koch curves can be viewed in another way: Each

generation consists of four versions of the previous generations. For

instance K2 consists of four versions of K1 tied end to end with certain
angles between them.

CS2401 COMPUTER GRAPHICS UNIT V

3

We call n the order of the curve Kn, and we say the order –n
Koch curve consists of four versions of the order (n-1) Koch curve.To
draw K2 we draw a smaller version of K1 , then turn left 60 , draw K1

again, turn right 120 , draw K1 a third time. For snowflake this routine is

performed just three times, with a 120 turn in between.

The recursive method for drawing any order Koch curve is
given in the following pseudocode:

To draw Kn:

if (n equals 0) Draw a straight line;
else {

Draw Kn-1;
Turn left 60 ;

Draw Kn-1;
Turn right 120 ;

Draw Kn-1;
Turn left 60 ;

Draw Kn-1;
}

Drawing a Koch Curve
Void drawKoch (double dir, double len, int n)
{

// Koch to order n the line of length len
// from CP in the direction dir

double dirRad= 0.0174533 * dir; // in radians
if (n ==0)

lineRel(len * cos(dirRad), len * sin(dirRad));
else {

n--; //reduce the order

len /=3; //and the length
drawKoch(dir, len, n);
dir +=60;

drawKoch(dir, len, n);

dir -=120;
drawKoch(dir, len, n);
dir +=60;

drawKoch(dir, len, n);
}

}
The routine drawKoch() draws Kn on the basis of a parent

line of length len that extends from the current position in the direction

CS2401 COMPUTER GRAPHICS UNIT V

4

dir. To keep track of the direction of each child generation, the parameter
dir is passed to subsequent calls of Koch().

5.3 Creating An Image By Means of Iterative Function Systems

Another way to approach infinity is to apply a
transformation to a picture again and again and examine the results.
This technique also provides an another method to create fractal shapes.

5.3.1 An Experimental Copier

We take an initial image I0 and put it through a special

photocopier that produces a new image I1. I1 is not a copy of I0 rather it is

a superposition of several reduced versions of I0. We then take I1 and

feed it back into the copier again, to produce image I2. This process is

repeated , obtaining a sequence of images I0, I1, I2,… called the orbit of

I0.

Making new copies from old

In general this copier will have N lenses, each of which

perform an affine mapping and then adds its image to the output. The
collection of the N affine transformations is called an “iterated function

system”.

An iterated function system is a collection of N affine

transformations Ti, for i=1,2,…N.
5.3.2 Underlying Theory of the Copying Process

Each lens in the copier builds an image by transforming

every point in the input image and drawing it on the output image. A
black and white image I can be described simply as the set of its black

points:
I = set of all black points = { (x,y) such that (x,y) is colored black }

I is the input image to the copier. Then the ith lens

characterized by transformation Ti, builds a new set of points we denote

as Ti(I) and adds them to the image being produced at the current

iteration. Each added set Ti(I) is the set of all transformed points I:
Ti(I) = { (x’,y’) such that (x’,y’) = Ti(P) for some point P in I }

CS2401 COMPUTER GRAPHICS UNIT V

5

Upon superposing the three transformed images, we obtain
the output image as the union of the outputs from the three lenses:

Output image = T1(I) U T2(I) U T3(I)
The overall mapping from input image to output image as

W(.). It maps one set of points – one image – into another and is given by:
W(.)=T1(.) U T2(.) U T3(.)

For instance the copy of the first image I0 is the set W(I0).

Each affine map reduces the size of its image at least
slightly, the orbit converge to a unique image called the attractor of the
IFS. We denote the attractor by the set A, some of its important

properties are:
1. The attractor set A is a fixed point of the mapping W(.), which we

write as W(A)=A. That is putting A through the copier again
produces exactly the same image A.

The iterates have already converged to the set A, so iterating
once more makes no difference.

2. Starting with any input image B and iterating the copying process

enough times, we find that the orbit of images always converges to
the same A.

If Ik = W (k)(B) is the kth iterate of image B, then as k goes to
infinity Ik becomes indistinguishable from the attractor A.

5.3.3 Drawing the kth Iterate
We use graphics to display each of the iterates along the

orbit. The initial image I0 can be set, but two choices are particularly
suited to the tools developed:

I0 is a polyline. Then successive iterates are collections of polylines.

I0 is a single point. Then successive iterates are collections of

points.
Using a polyline for I0 has the advantage that you can see

how each polyline is reduced in size in each successive iterate. But
more memory and time are required to draw each polyline and finally
each polyline is so reduced as to be indistinguishable from a point.

Using a single point for I0 causes each iterate to be a set of
points, so it is straight forward to store these in a list. Then if IFS

consists of N affine maps, the first iterate I1 consists of N points,

image I2 consists of N2 points, I3 consists of N3 points, etc.
Copier Operation pseudocode(recursive version)

void superCopier(RealPolyArray pts, int k)
{ //Draw kth iterate of input point list pts for the IFS

int i;
RealPolyArray newpts; //reserve space for new list

if(k==0) drawPoints(pts);
else for(i=1; i<=N; i++) //apply each affine
{

CS2401 COMPUTER GRAPHICS UNIT V

6

0

newpts.num= N * pts.num; //the list size grows fast
for(j=0; j<newpts.num; j++) //transforms the jth point

transform(affines[i], pts.pt[j], newpts.pt[j]);
superCopier(newpts, k – 1);

}
}

If k=0 it draws the points in the list

If k>0 it applies each of the affine maps Ti, in turn, to all of the
points, creating a new list of points, newpts, and then calls
superCopier(newpts, k – 1);

To implement the algorithm we assume that the affine maps
are stored in the global array Affine affines[N].
Drawbacks

Inefficient

Huge amount of memory is required.
5.3.4 The Chaos Game

The Chaos Game is a nonrecursive way to produce a picture

of the attractor of an IFS.
The process for drawing the Sierpinski gasket

Set corners of triangle :p[0]=(0,0), p[1]=(1,0), p[2]=(.5,1)
Set P to one of these, chosen randomly;
do {

Draw a dot at P;

Choose one of the 3 points at random;
Set newPt to the midpoint of P and the chosen point;

Set P= newPt;
} while(!bored);

A point P is transformed to the midpoint of itself and one of
the three fixed points: p[0], p[1] or p[2]. The new point is then drawn as a
dot and the process repeats. The picture slowly fills in as the sequence of
dots is drawn.

The key is that forming a midpoint based on P is in fact
applying an affine transformation. That is

P =
1

(P + p[…]) (find the midpoint of P and p[..])
2

Can be written as

1
1

P = P 2

0
1

+
2

2

p[..]

So that P is subjected to the affine map, and then the transformed
version is written back into P. The offset for this map depends on which
point p[i[is chosen.

CS2401 COMPUTER GRAPHICS UNIT V

7

Drawing the Sierpinski gasket

One of the three affine maps is chosen at random each time,
and the previous point P is subjected to it. The new point is drawn and

becomes the next point to be transformed.
Also listed with each map is the probability pri that the map

is chosen at each iteration.
Starting with a point P0, the sequence of iterations through

this system produces a sequence of points P0, P1,.., which we call the

orbit of the system with starting point P0. This is a random orbit,
different points are visited depending on the random choices made at
each iteration.

The idea behind this approach is that the attractor consists
of all points that are reachable by applying a long sequence of affines in

the IFS. The randomness is invoked to ensure that the system is fully

exercised, that every combination of affine maps is used somewhere in
the process.

Pseudocode for playing the Chaos Game
void chaosGame(Affine aff[], double pr[], int N)
{

RealPoint P = { 0,0 ,0,0}; //set some initial point
int index;
do {

index = chooseAffine(pr , N); // choose the next affine

P = transform(aff[ondex], P);
drawRealDot(P); // draw the dot

} while (!bored);

}
The function chaosGame() plays the chaos game. The

function draws the attractor of the IFS whose N transforms are stored in
the array aff[]. The probabilities to be used are stored in an array pr[]. At
each iteration one of the N affine maps is chosen randomly by the

function chooseAffine() and is used to transform the previous point into
the next point.
Adding Color

The pictures formed by playing the Chaos Game are bilevel,
black dots on a white background. It is easy to extend the method so

CS2401 COMPUTER GRAPHICS UNIT V

8

that it draws gray scale and color images of objects. The image is viewed
as a collection of pixels and at each iteration the transformed point lands

in one of the pixels. A counter is kept for each pixel and at the
completion of the game the number of times each pixel has been visited
is converted into a color according to some mapping.

5.3.4 Finding the IFS; Fractal Image Compression

Dramatic levels of image compression provide strong

motivation for finding an IFS whose attractor is the given image. A image
contains million bytes of data, but it takes only hundreds or thousands
of bytes to store the coefficients of the affine maps in the IFS.

Fractal Image Compression and regeneration

The original image is processed to create the list of affine
maps, resulting in a greatly compressed representation of the image.

In the decompression phase the list of affine maps is used
and an algorithm such as the Chaos Game reconstructs the image. This

compression scheme is lossy, that is the image I’ that is generated by the
game during decompression is not a perfect replica of the original image

I.

5.4 THE MANDELBROT SET

Graphics provides a powerful tool for studying a fascinating
collection of sets that are the most complicated objects in mathematics.

Julia and Mandelbrot sets arise from a branch of analysis

known as iteration theory, which asks what happens when one iterates a
function endlessly. Mandelbrot used computer graphics to perform

experiments.
5.4.1 Mandelbrot Sets and Iterated Function Systems

A view of the Mandelbrot set is shown in the below figure. It
is the black inner portion, which appears to consist of a cardoid along
with a number of wartlike circles glued to it.

Its border is complicated and this complexity can be

explored by zooming in on a portion of the border and computing a close
up view. Each point in the figure is shaded or colored according to the

outcome of an experiment run on an IFS.

CS2401 COMPUTER GRAPHICS UNIT V

9

The Mandelbrot set

The Iterated function systems for Julia and Mandelbrot sets

The IFS uses the simple function
f(z) = z2 + c -------------------------------(1)

where c is some constant. The system produces each output by squaring

its input and adding c. We assume that the process begins with the
starting value s, so the system generates the sequence of values or orbit

d1= (s)2 + c
d2= ((s)2 + c)2 + c

d3= (((s)2 + c)2 + c)2 + c
d4= ((((s)2 + c)2 + c)2 + c)2 + c ------------------------------(2)

The orbit depends on two ingredients

the starting point s

the given value of c
Given two values of s and c how do points dk along the orbit

behaves as k gets larger and larger? Specifically, does the orbit remain
finite or explode. Orbits that remain finite lie in their corresponding Julia
or Mandelbrot set, whereas those that explode lie outside the set.

When s and c are chosen to be complex numbers , complex
arithmetic is used each time the function is applied. The Mandelbrot and
Julia sets live in the complex plane – plane of complex numbers.

CS2401 COMPUTER GRAPHICS UNIT V

10

c

The IFS works well with both complex and real numbers.
Both s and c are complex numbers and at each iteration we square the

previous result and add c. Squaring a complex number z = x + yi yields
the new complex number:

(x + yi)2 = (x2 – y2) + (2xy)i ----------------------------------(3)

having real part equal to x2 – y2 and imaginary part equal to

2xy.

Some Notes on the Fixed Points of the System
It is useful to examine the fixed points of the system

f(.) =(.)2 + c . The behavior of the orbits depends on these fixed points

that is those complex numbers z that map into themselves, so that
z2 + c = z. This gives us the quadratic equation z2 – z + c = 0 and the fixed
points of the system are the two solutions of this equation, given by

p+, p- =
1 1
2 4

--------------------------------(4)

If an orbit reaches a fixed point, p its gets trapped there
forever. The fixed point can be characterized as attracting or repelling.

If an orbit flies close to a fixed point p, the next point along the orbit will
be forced

closer to p if p is an attracting fixed point

farther away from p if p is a repelling a fixed point.
If an orbit gets close to an attracting fixed point, it is sucked

into the point. In contrast, a repelling fixed point keeps the orbit away
from it.

5.4.2 Defining the Mandelbrot Set
The Mandelbrot set considers different values of c, always

using the starting point s =0. For each value of c, the set reports on the
nature of the orbit of 0, whose first few values are as follows:
orbit of 0: 0, c, c2+c, (c2+c)2+c, ((c2+c)2+c)2 +c,……..

For each complex number c, either the orbit is finite so that

how far along the orbit one goes, the values remain finite or the orbit
explodes that is the values get larger without limit. The Mandelbrot set
denoted by M, contains just those values of c that result in finite orbits:

The point c is in M if 0 has a finite orbit.

The point c is not in M if the orbit of 0 explodes.
Definition:

The Mandelbrot set M is the set of all complex numbers c
that produce a finite orbit of 0.

If c is chosen outside of M, the resulting orbit explodes. If c
is chosen just beyond the border of M, the orbit usually thrashes around
the plane and goes to infinity.

If the value of c is chosen inside M, the orbit can do a variety
of things. For some c’s it goes immediately to a fixed point or spirals into
such a point.

CS2401 COMPUTER GRAPHICS UNIT V

11

5.4.3 Computing whether Point c is in the Mandelbrot Set
A routine is needed to determine whether or not a given

complex number c lies in M. With a starting point of s=0, the routine

must examine the size of the numbers dk along the orbit. As k increases

the value of

in M).

d k either explodes(c is not in M) or does not explode(c is

A theorem from complex analysis states that if d k exceeds

the value of 2, then the orbit will explode at some point. The number of

iterations d k takes to exceed 2 is called the dwell of the orbit.

But if c lies in M, the orbit has an infinite dwell and we can’t

know this without it iterating forever. We set an upper limit Num on the
maximum number of iterations we are willing to wait for.

A typical value is Num = 100. If d k has not exceeded 2 after

Num iterates, we assume that it will never and we conclude that c is in
M. The orbits for values of c just outside the boundary of M have a large

dwell and if their dwell exceeds Num, we wrongly decide that they lie
inside M. A drawing based on too small value of Num will show a
Mandelbrot set that is slightly too large.
dwell() routine

int dwell (double cx, double cy)

{ // return true dwell or Num, whichever is smaller
#define Num 100 // increase this for better pictures

double tmp, dx=cx, dy=cy, fsq=cx *cx + cy * cy;
for(int count=0; count<=Num && fsq <=4; count++)
{

tmp = dx; //save old real part
dx = dx * dx – dy * dy +cx; //new real part
dy = 2.0 * tmp * dy + cy; //new imaginary part

fsq = dx * dx + dy * dy;
}

return count; // number of iterations used
}

For a given value of c = cx + cyi, the routine returns the

number of iterations required for d k to exceed 2.

At each iteration, the current dk resides in the pair (dx,dy)
which is squared using eq(3) and then added to (cx,cy) to form the next

d value. The value d k
2 is kept in fsq and compared with 4. The dwell()

function plays a key role in drawing the Mandelbrot set.

5.4.4 Drawing the Mandelbrot Set

To display M on a raster graphics device. To do this we set
up a correspondence between each pixel on the display and a value of c,

CS2401 COMPUTER GRAPHICS UNIT V

12

and the dwell for that c value is found. A color is assigned to the pixel,
depending on whether the dwell is finite or has reached its limit.

The simplest picture of the Mandelbrot set just assign black

to points inside M and white to those outside. But pictures are more
appealing to the eye if a range of color is associated with points outside
M. Such points all have dwells less than the maximum and we assign

different colors to them on the basis of dwell size.
Assigning colors according to the orbit’s dwell

The figure shows how color is assigned to a point having
dwell d. For very small values of d only a dim blue component is used. As
d approaches Num the red and green components are increased up to a

maximum unity. This could be implemented in OpenGL using:
float v = d / (float)Num;
glColor3f(v * v, v*, v, 0.2); // red & green at level v-squared

We need to see how to associate a pixel with a specific complex value of
c. A simple approach is suggested in the following figure.

Establishing a window on M and a correspondence between points
and pixels.

The user specifies how large the desired image is to be on
the screen that is

the number of rows, rows

the number of columns, cols

CS2401 COMPUTER GRAPHICS UNIT V

13

y

This specification determines the aspect ratio of the image
:R= cols/rows. The user also chooses a portion of the complex plane

to be displayed: a rectangular region having the same aspect ratio as

the image. To do this the user specifies the region’s upper left hand
corner P and its width W. The rectangle’s height is set by the required
aspect ratio. The image is displayed in the upper left corner of the

display.
To what complex value c= cx + cyi, does the center of the i,

jth pixel correspond? Combining we get

cij = Px

i
1

j
1

2 W , P 2 W

------------------------(5)

cols cols

for i = 0,…….,cols-1 and j=0,…..,rows-1.
The chosen region of the Mandelbrot set is drawn pixel by

pixel. For each pixel the corresponding value of c is passed to dwell(),

and the appropriate color associated with the dwell is found. The pixel
is then set to this color.

Pseudocode for drawing a region of the Mandelbrot set
for(j=0; j<rows; j++)

for(i=0; i<cols; i++)
{

find the corresponding c value in equation (5)
estimate the dwell of the orbit
find Color determined by estimated dwell

setPixel(j , k, Color);
}

A practical problem is to study close up views of the
Mandelbrot set, numbers must be stored and manipulated with great

precision.
Also when working close to the boundary of the set , you

should use a larger value of Num. The calculation times for each
image will increase as you zoom in on a region of the boundary of M.

But images of modest size can easily be created on a microcomputer
in a reasonable amount of time.

5.5 JULIA SETS

Like the Mandelbrot set, Julia sets are extremely

complicated sets of points in the complex plane. There is a different Julia

set, denoted Jc for each value of c. A closely related variation is the filled-

in Julia set, denoted by Kc, which is easier to define.
5.5.1 The Filled-In Julia Set Kc

In the IFS we set c to some fixed chosen value and examine
what happens for different starting point s. We ask how the orbit of

CS2401 COMPUTER GRAPHICS UNIT V

14

starting point s behaves. Either it explodes or it doesn’t. If it is finite , we
say the starting point s is in Kc, otherwise s lies outside of Kc.
Definition:

The filled-in Julia set at c, Kc, is the set of all starting points
whose orbits are finite.

When studying Kc, one chooses a single value for c and
considers different starting points. Kc should be always symmetrical
about the origin, since the orbits of s and –s become identical after one
iteration.
5.5.2 Drawing Filled-in Julia Sets

A starting point s is in Kc, depending on whether its orbit is
finite or explodes, the process of drawing a filled-in Julia set is almost

similar to Mandelbrot set. We choose a window in the complex plane and
associate pixels with points in the window. The pixels correspond to
different values of the starting point s. A single value of c is chosen and

then the orbit for each pixel position is examined to see if it explodes and
if so, how quickly does it explodes.

Pseudocode for drawing a region of the Filled-in Julia set
for(j=0; j<rows; j++)

for(i=0; i<cols; i++)
{

find the corresponding s value in equation (5)
estimate the dwell of the orbit
find Color determined by estimated dwell
setPixel(j , k, Color);

}

The dwell() must be passed to the starting point s as well as

c. Making a high-resolution image of a Kc requires a great deal of
computer time, since a complex calculation is associated with every
pixel.
5.5.3 Notes on Fixed Points and Basins of Attraction

If an orbit starts close enough to an attracting fixed point, it

is sucked into that point. If it starts too far away, it explodes. The set of
points that are sucked in forms a so called basin of attraction for the

fixed point p. The set is the filled-in Julia set Kc. The fixed point which
lies inside the circle |z|= ½ is the attracting point.

All points inside Kc, have orbits that explode. All points

inside Kc, have orbits that spiral or plunge into the attracting fixed point.

If the starting point is inside Kc, then all of the points on the orbit must

also be inside Kc and they produce a finite orbit. The repelling fixed point

is on the boundary of Kc.
Kc for Two Simple Cases

The set Kc is simple for two values of c:
1. c=0: Starting at any point s, the orbit is simply s, s2,s4,…….,s2k,…,

so the orbit spirals into 0 if |s|<1 and explodes if |s|>1. Thus K0

is the set of all complex numbers lying inside the unit circle, the

CS2401 COMPUTER GRAPHICS UNIT V

15

c

c

circle of radius 1 centered at the origin.
2. c = -2: in this case it turns out that the filled-in Julia set consists

of all points lying on the real axis between -2 and 2.
For all other values of c, the set Kc, is complex. It has been

shown that each Kc is one of the two types:
Kc is connected or

Kc is a Cantor set
A theoretical result is that Kc is connected for precisely those

values of c that lie in the Mandelbrot set.
5.5.4 The Julia Set Jc

Julia Set Jc is for any given value of c; it is the boundary of

Kc. Kc is the set of all starting points that have finite orbits and every

point outside Kc has an exploding orbit. We say that the points just along

the boundary of Kc and “on the fence”. Inside the boundary all orbits
remain finite; just outside it, all orbits goes to infinity.
Preimages and Fixed Points

If the process started instead at f(s), the image of s, then the
two orbits would be:

s, f(s), f2(s), f3(s),…. (orbit of s)

or
f(s), f2(s), f3(s), f4(s),…. (orbit of f(s))
which have the same value forever. If the orbit of s is finite,

then so is the orbit of its image f(s). All of the points in the orbit , if
considered as starting points on their own, have orbits with thew same
behavior: They all are finite or they all explode.

Any starting point whose orbit passes through s has the
same behavior as the orbit that start at s: The two orbits are identical

forever. The point “just before” s in the sequence is called the preimage
of s and is the inverse of the function f(.) = (.)2 + c. The inverse of f(.) is

z , so we have

two preimages of z are given by z ------------------(6)

To check that equation (6) is correct, note that if either

preimage is passed through (.)2 + c, the result is z. The test is illustrated
in figure(a) where the orbit of s is shown in black dots and the two

preimages of s are marked. The two orbits of these preimages “join up”
with that of s.

Each of these preimages has two preimages and each if
these has two, so there is a huge collection of orbits that join up with the

orbit of s, and thereafter committed to the same path. The tree of
preimages of s is illustrated in fig(B): s has two parent preimages, 4
grandparents, etc. Going back k generations we find that there are 2k

preimages.

CS2401 COMPUTER GRAPHICS UNIT V

16

c

c

Orbits that coincide at s

The Julia set Jc can be characterized in many ways that are

more precise than simply saying it is the “boundary of” Kc. One such

characterization that suggests an algorithm for drawing Jc is the
following:
The collection of all preimages of any point in Jc is dense in Jc.

Starting with any point z in Jc, we simply compute its two
parent preimages, their four grandparent preimages, their eight great-
grandparent ones, etc. So we draw a dot at each such preimage, and the
display fills in with a picture of the Julia set. To say that these dots are

dense in Jc means that for every point in Jc, there is some preimage that
is close by.

Drawing the Julia set Jc

To draw Jc we need to find a point and place a dot at all of
the point’s preimages. Therea re two problems with this method:

1. finding a point in Jc

2. keeping track of all the preimages
An approach known as the backward-iteration method

overcomes these obstacles and produces good result. The idea is simple:
Choose some point z in the complex plane. The point may or may not be

in Jc. Now iterate in backward direction: at each iteration choose one of
the two square roots randomly, to produce a new z value. The following

pseudocode is illustrative:
do {

if (coin flip is heads z= z);

else z = z ;

draw dot at z;

} while (not bored);

The idea is that for any reasonable starting point iterating

backwards a few times will produce a z that is in Jc. It is as if the
backward orbit is sucked into the Julia set. Once it is in the Julia set, all

CS2401 COMPUTER GRAPHICS UNIT V

17

subsequent iterations are there, so point after point builds up inside Jc,

and a picture emerges.

5.6 RANDOM FRACTALS

Fractal is the term associated with randomly generated

curves and surfaces that exhibit a degree of self-similarity. These curves
are used to provide “naturalistic” shapes for representing objects such as
coastlines, rugged mountains, grass and fire.
5.6.1 Fractalizing a Segment

The simplest random fractal is formed by recursively

roughening or fractalizing a line segment. At each step, each line
segment is replaced with a “random elbow”.

The figure shows this process applied to the line segment S

having endpoints A and B. S is replaced by the two segments from A to C
and from C to B. For a fractal curve, point C is randomly chosen along

the perpendicular bisector L of S. The elbow lies randomly on one or the
other side of the “parent” segment AB.

Fractalizing with a random elbow

Steps in the fractalization process

Three stages are required in the fractalization of a segment.

In the first stage, the midpoint of AB is perturbed to form point C. In the
second stage , each of the two segment has its midpoints perturbed to

CS2401 COMPUTER GRAPHICS UNIT V

18

form points D and E. In the third and final stage, the new points F…..I
are added.

To perform fractalization in a program
Line L passes through the midpoint M of segment S and is

perpendicular to it. Any point C along L has the parametric form:
C(t) = M + (B-A) t -----------------------------------(7)

for some values of t, where the midpoint M= (A+B)/2.

The distance of C from M is |B-A||t|, which is proportional
to both t and the length of S. So to produce a point C on the random

elbow, we let t be computed randomly. If t is positive, the elbow lies to
one side of AB; if t is negative it lies to the other side.

For most fractal curves, t is modeled as a Gaussian random

variable with a zero mean and some standard deviation. Using a mean of
zero causes, with equal probability, the elbow to lie above or below the
parent segment.

Fractalizing a Line segment
void fract(Point2 A, Point2 B, double stdDev)

// generate a fractal curve from A to B

double xDiff = A.x – B.x, yDiff= A.y –B.y;
Point2 C;
if(xDiff * XDiff + YDiff * yDiff < minLenSq)

cvs.lintTo(B.x, B.y);
else
{

}

stdDev *=factor; //scale stdDev by factor

double t=0;
// make a gaussian variate t lying between 0 and 12.0
for(int i=0; I, 12; i++)

t+= rand()/32768.0;
t= (t-6) * stdDev; //shift the mean to 0 and sc
C.x = 0.5 *(A.x +B.x) – t * (B.y – A.y);

C.y = 0.5 *(A.y +B.y) – t * (B.x – A.x);
fract(A, C, stdDev);

fract(C, B, stdDev);

The routine fract() generates curves that approximate actual

fractals. The routine recursively replaces each segment in a random
elbow with a smaller random elbow. The stopping criteria used is: When
the length of the segment is small enough, the segment is drawn using

cvs.lineTo(), where cvs is a Canvas object. The variable t is made to be
approximately Gaussian in its distribution by summing together 12

uniformly distributed random values lying between 0 and 1. The result
has a mean value of 6 and a variance of 1. The mean value is then
shifted to 0 and the variance is scaled as necessary.

The depth of recursion in fract() is controlled by the length of
the line segment.

CS2401 COMPUTER GRAPHICS UNIT V

19

5

5.6.2 Controlling the Spectral Density of the Fractal Curve
The fractal curve generated using the above code has a

“power spectral density” given by

S(f)= 1/f β

Where β the power of the noise process is the parameter the

user can set to control the jaggedness of the fractal noise. When β is 2,
the process is known as Brownian motion and when β is 1, the process is
called “1/f noise”. 1/f noise is self similar and is shown to be a good

model for physical process such as clouds. The fractal dimension of such
processes is:

D
2

In the routine fract(), the scaling factor factor by which the
standard deviation is scaled at each level based on the exponent β of the

fractal curve. Values larger than 2 leads to smoother curves and values
smaller than 2 leads to more jagged curves. The value of factor is given

by:
factor = 2 (1 – β/2)

The factor decreases as β increases.

Drawing a fractal curve(pseudocode)

double MinLenSq, factor; //global variables
void drawFractal (Point2 A, Point2 B)
{

double beta, StdDev;

User inputs beta, MinLenSq and the the initial StdDev
factor = pow(2.0, (1.0 – beta)/ 2.0);
cvs.moveTo(A);

fract(A, B, StdDev);
}
In this routine factor is computed using the C++ library

function pow(…).
One of the features of fractal curves generated by

pseudorandom –number generation is that they are repeatable. All that is
required is to use the same seed each time the curve is fractalized. A
complicated shape can be fractalized and can be stored in the database

by storing only

the polypoint that describes the original line segments

the values of minLenSq and stdDev and

the seed.

An extract replica of the fractalized curve can be regenerated
at any time using these informations.

CS2401 COMPUTER GRAPHICS UNIT V

20

5.7 INTERSECTING RAYS WITH OTHER PRIMITIVES
First the ray is transformed into the generic coordinates of the object and then the

various intersection with the generic object are computed.

1) Intersecting with a Square
The generic square lies in the z=0 plane and extends from -1 to 1 in both x and y.
The square can be transformed into any parallelogram positioned in space, so it is

often used in scenes to provide this, flat surfaces such as walls and windows. The
function hit(1) first finds where the ray hits the generic plane and then test whether this
hit spot also lies within the square.

2) Intersecting with a Tapered Cylinder
The side of the cylinder is part of an infinitely long wall with a radius of L at

z=0,and a small radius of S at z=1.This wall has the implicit form as

F(x, y, z)=x
2

+ y
2
- (1 + (S - 1) z)

2
, for 0 < z < 1

If S=1, the shape becomes the generic cylinder, if S=0 , it becomes the generic

cone. We develop a hit () method for the tapered cylinder, which also provides hit()

method for the cylinder and cone.

3) Intersecting with a Cube (or any Convex Polyhedron)
The convex polyhedron, the generic cube deserves special attention. It is centered

at the origin and has corner at (±1, ±1, ±1) using all right combinations of +1 and -

1.Thus,its edges are aligned with coordinates axes, and its six faces lie in the plan.

The generic cube is important for two reasons.

 A large variety of intersecting boxes can be modeled and placed in a scene by

applying an affine transformation to a generic cube. Then, in ray tracing each ray

can be inverse transformed into the generic cube’s coordinate system and we can

use a ray with generic cube intersection routine.

 The generic cube can be used as an extent for the other generic primitives in the

sense of a bounding box. Each generic primitives, such as the cylinder, fits snugly

inside the cube.

4) Adding More Primitives
To find where the ray S + ct intersects the surface, we substitute S + ct for P in

F(P) (the explicit form of the shape)

d(t) = f(S + ct)

This function is

positive at these values of t for which the ray is outside the object.

zero when the ray coincides with the surface of the object and

negative when the ray is inside the surface.

The generic torus has the implicit function as
2 2 2 2F(P) = (Px +Py

So the resulting equation d(t)=0 is quartic.
) - d) + Pz - 1

CS2401 COMPUTER GRAPHICS UNIT V

21

For quadrics such as the sphere, d(t) has a parabolic shape, for the torus, it has a

quartic shape. For other surfaces d(t) may be so complicated that we have to search

numerically to locate t’s for which d(.) equals zero. The function for super ellipsoid is
d(t) = ((Sx + Cxt)

n
+(Sy + Cyt)

n
)
m/n

+ (Sy + Cyt)
m

-1
where n and m are constant that govern the shape of the surface.

5.8 ADDING SURFACE TEXTURE
A fast method for approximating global illumination effect is environmental

mapping. An environment array is used to store background intensity information for a

scene. This array is then mapped to the objects in a scene based on the specified viewing

direction. This is called as environment mapping or reflection mapping.

To render the surface of an object, we project pixel areas on to surface and then reflect

the projected pixel area on to the environment map to pick up the surface shading

attributes for each pixel. If the object is transparent, we can also refract the projected

pixel are also the environment map. The environment mapping process for reflection of a

projected pixel area is shown in figure. Pixel intensity is determined by averaging the

intensity values within the intersected region of the environment map.

A simple method for adding surface detail is the model structure and patterns with

polygon facets. For large scale detail, polygon modeling can give good results. Also we

could model an irregular surface with small, randomly oriented polygon facets, provided

the facets were not too small.

Surface pattern polygons are generally overlaid on a larger surface polygon and are

processed with the parent’s surface. Only the parent polygon is processed by the visible

surface algorithms, but the illumination parameters for the surfac3e detail polygons take

precedence over the parent polygon. When fine surface detail is to be modeled, polygon

are not practical.

5.8.1 Texture Mapping

A method for adding surface detail is to map texture patterns onto the surfaces of
objects. The texture pattern may either be defined in a rectangular array or as a

procedure that modifies surface intensity values. This approach is referred to as texture

mapping or pattern mapping.

The texture pattern is defined with a rectangular grid of intensity values in a

texture space referenced with (s,t) coordinate values. Surface positions in the scene are

referenced with UV object space coordinates and pixel positions on the projection plane

are referenced in xy Cartesian coordinates.
Texture mapping can be accomplished in one of two ways. Either we can map the

texture pattern to object surfaces, then to the projection plane, or we can map pixel areas
onto object surfaces then to texture space. Mapping a texture pattern to pixel coordinates
is sometime called texture scanning, while the mapping from pixel coordinates to texture
space is referred to as pixel order scanning or inverse scanning or image order
scanning.

To simplify calculations, the mapping from texture space to object space is often
specified with parametric linear functions

U=fu(s,t)=au s+ but + cu

V=fv(s,t)=av s+ bvt + cv

CS2401 COMPUTER GRAPHICS UNIT V

22

The object to image space mapping is accomplished with the concatenation of the

viewing and projection transformations.

A disadvantage of mapping from texture space to pixel space is that a selected

texture patch usually does not match up with the pixel boundaries, thus requiring

calculation of the fractional area of pixel coverage. Therefore, mapping from pixel space

to texture space is the most commonly used texture mapping method. This avoids pixel

subdivision calculations, and allows anti aliasing procedures to be easily applied.
The mapping from image space to texture space does require calculation of the

inverse viewing projection transformation mVP
-1

and the inverse texture map
transformation mT

-1
.

5.8.2 Procedural Texturing Methods
Next method for adding surface texture is to use procedural definitions of the

color variations that are to be applied to the objects in a scene. This approach avoids the

transformation calculations involved transferring two dimensional texture patterns to

object surfaces.

When values are assigned throughout a region of three dimensional space, the

object color variations are referred to as solid textures. Values from texture space are

transferred to object surfaces using procedural methods, since it is usually impossible to

store texture values for all points throughout a region of space (e.g) Wood Grains or

Marble patterns Bump Mapping.

Although texture mapping can be used to add fine surface detail, it is not a good

method for modeling the surface roughness that appears on objects such as oranges,

strawberries and raisins. The illumination detail in the texture pattern usually does not

correspond to the illumination direction in the scene.
A better method for creating surfaces bumpiness is to apply a perturbation function to
the surface normal and then use the perturbed normal in the illumination model
calculations. This technique is called bump mapping.
If P(u,v) represents a position on a parameter surface, we can obtain the surface normal at
that point with the calculation

N = Pu × Pv

Where Pu and Pv are the partial derivatives of P with respect to parameters u and v.
To obtain a perturbed normal, we modify the surface position vector by adding a small
perturbation function called a bump function.

P’(u,v) = P(u,v) + b(u,v) n.

This adds bumps to the surface in the direction of the unit surface normal n=N/|N|. The

perturbed surface normal is then obtained as

N'=Pu' + Pv'

We calculate the partial derivative with respect to u of the perturbed position vector as
Pu' = _∂_(P + bn)

∂u
= Pu + bu n + bnu

Assuming the bump function b is small, we can neglect the last term and write
p u' ≈ pu + bun

Similarly p v'= p v + b v n.
and the perturbed surface normal is

N' = Pu + Pv + b v (Pu x n) + bu (n x Pv) + bu bv (n x n).

CS2401 COMPUTER GRAPHICS UNIT V

23

But n x n =0, so that

N' = N + bv (Pu x n) + bu (n x Pv)

The final step is to normalize N' for use in the illumination model calculations.

5.8.3 Frame Mapping
Extension of bump mapping is frame mapping.

In frame mapping, we perturb both the surface normal N and a local coordinate

system attached to N. The local coordinates are defined with a surface tangent

vector T and a binormal vector B x T x N.

Frame mapping is used to model anisotrophic surfaces. We orient T along the

grain of the surface and apply directional perturbations in addition to bump perturbations

in the direction of N. In this way, we can model wood grain patterns, cross thread
patterns in cloth and streaks in marble or similar materials. Both bump and directional
perturbations can be obtained with table look-ups.

To incorporate texturing into a ray tracer, two principal kinds of textures are used.

With image textures, 2D image is pasted onto each surface of the object.

With solid texture, the object is considered to be carved out of a block of

some material that itself has texturing. The ray tracer reveals the color of

the texture at each point on the surface of the object.

5.8.4 Solid Texture
Solid texture is sometimes called as 3D texture. We view an object as being

carved out of some texture material such as marble or wood. A texture is represented by a

function texture (x, y, z) that produces an (r, g, h) color value at every point in space.

Think of this texture as a color or inkiness that varies with position, if u look at different

points (x, y, z) you see different colors. When an object of some shape is defined in this

space, and all the material outside the shape is chipped away to reveal the object’s surface

the point (x, y, z) on the surface is revealed and has the specified texture.

5.8.5 Wood grain texture
The grain in a log of wood is due to concentric cylinders of varying color,

corresponding to the rings seen when a log is cut. As the distance of the points from some

axis varies, the function jumps back and forth between two values. This effect can be

simulated with the modulo function.

Rings(r) = ((int) r)%2

where for rings about z-axis, the radius r = √x
2
+y

2
.The value of the function rings ()

jumps between zero and unity as r increases from zero.

5.8.6 3D Noise and Marble Texture

The grain in materials such as marble is quite chaotic. Turbulent riverlets of dark
material course through the stone with random whirls and blotches as if the stone was

formed out of some violently stirred molten material. We can simulate turbulence by

building a noise function that produces an apparently random value at each point (x,y,z)

in space. This noise field is the stirred up in a well-controlled way to give appearance of

turbulence.

5.8.7 Turbulence

CS2401 COMPUTER GRAPHICS UNIT V

24

A method for generating more interesting noise. The idea is to mix together

several noise components: One that fluctuates slowly as you move slightly through space,

one that fluctuates twice as rapidly, one that fluctuates four times rapidly, etc. The more

rapidly varying components are given progressively smaller strengths

turb (s, x, y, z) = 1/2noise(s ,x, y, z) + 1/4noise(2s,x,y,z) +1/8 noise (4s,x,y,z).

The function adds three such components, each behalf as strong and varying twice

as rapidly as its predecessor.

Common term of a turb () is a

turb (s, x, y, z) = 1/2 1/2
K
noise(2

k
s, x, y, z).

5.8.8 Marble Texture
Marble shows veins of dark and light material that have some regularity ,but that

also exhibit strongly chaotic irregularities. We can build up a marble like 3D texture by

giving the veins a smoothly fluctuating behavior in the z-direction and then perturbing it

chantically using turb(). We start with a texture that is constant in x and y and smoothly

varying in z.

Marble(x,y,z)=undulate(sin(2)).

Here undulate() is the spline shaped function that varies between some dark and

some light value as its argument varies from -1 to 1.

5.9 REFLECTIONS AND TRANSPERENCY
The great strengths of the ray tracing method is the ease with which it can handle

both reflection and refraction of light. This allows one to build scenes of exquisite

realism, containing mirrors, fishbowls, lenses and the like. There can be multiple

reflections in which light bounces off several shiny surfaces before reaching the eye or

elaborate combinations of refraction and reflection. Each of these processes requires the

spawnins and tracing of additional rays.
The figure 5.15 shows a ray emanating, from the eye in the direction dir and

hitting a surface at the point Ph. when the surface is mirror like or transparent, the light I
that reaches the eye may have 5 components

I=Iamb + Idiff + Ispec + Irefl + Itran

The first three are the fan=miler ambient, diffuse and specular contributions. The
diffuse and specular part arise from light sources in the environment that are visible at Pn.

Iraft is the reflected light component ,arising from the light , Ik that is incident at Pn along

the direction –r. This direction is such that the angles of incidence and reflection are
equal,so

R=dir-2(dir.m)m

Where we assume that the normal vector m at Ph has been normalized.
Similarly Itran is the transmitted light components arising from the light IT that is

transmitted thorough the transparent material to Ph along the direction –t. A portion of
this light passes through the surface and in so doing is bent, continuing its travel along –

dir. The refraction direction + depends on several factors.

I is a sum of various light contributions, IR and IT each arise from their own fine

components – ambient, diffuse and so on. IR is the light that would be seen by an eye at

Ph along a ray from P’ to Pn. To determine IR, we do in fact spawn a secondary ray from

Pn in the direction r, find the first object it hits and then repeat the same computation of

CS2401 COMPUTER GRAPHICS UNIT V

25

sin(θ2) = sin(θ1)

C2 C1

light component. Similarly IT is found by casting a ray in the direction t and seeing what

surface is hit first, then computing the light contributions.

5.9.1 The Refraction of Light
When a ray of light strikes a transparent object, apportion of the ray penetrates the

object. The ray will change direction from dir to + if the speed of light is different in
medium 1 than in medium 2. If the angle of incidence of the ray is θ1, Snell’s law states
that the angle of refraction will be

where C1 is the spped of light in medium 1 and C2 is the speed of light in medium
2. Only the ratio C2/C1 is important. It is often called the index of refraction of medium 2
with respect to medium 1. Note that if θ1 ,equals zero so does θ2 .Light hitting an
interface at right angles is not bent.

In ray traving scenes that include transparent objects, we must keep track of the
medium through which a ray is passing so that we can determine the value C2/C1 at the
next intersection where the ray either exists from the current object or enters another one.
This tracking is most easily accomplished by adding a field to the ray that holds a pointer
to the object within which the ray is travelling.

Several design polices are used,
1) Design Policy 1: No two transparent object may interpenetrate.

2) Design Policy 2: Transparent object may interpenetrate.

5.10 COMPOUND OBJECTS: BOOLEAN OPERATIONS ON

OBJECTS

A ray tracing method to combine simple shapes to more complex ones is known

as constructive Solid Geometry(CSG). Arbitrarily complex shapes are defined by set

operations on simpler shapes in a CSG. Objects such as lenses and hollow fish bowls, as

well as objects with holes are easily formed by combining the generic shapes. Such

objects are called compound, Boolean or CSG objects.

The Boolean operators: union, intersection and difference are shown in the figure

5.17.

Two compound objects build from spheres. The intersection of two spheres is

shown as a lens shape. That is a point in the lens if and only if it is in both spheres. L is

the intersection of the S1 and S2 is written as

L=S1∩S2

The difference operation is shown as a bowl.A point is in the difference of sets A

and B, denoted A-B,if it is in A and not in B.Applying the difference operation is

analogous to removing material to cutting or carrying.The bowl is specified by

B=(S1-S2)-C.

CS2401 COMPUTER GRAPHICS UNIT V

26

The solid globe, S1 is hollowed out by removing all the points of the inner sphere,

S2,forming a hollow spherical shell. The top is then opened by removing all points in the

cone C.

A point is in the union of two sets A and B, denoted AUB, if it is in A or in B or

in both. Forming the union of two objects is analogous to gluing them together.

The union of two cones and two cylinders is shown as a rocket.

R=C1 U C2 U C3 U C4.

Cone C1 resets on cylinder C2.Cone C3 is partially embedded in C2 and resets on

the fatter cylinder C4.

5.10.1 Ray Tracing CSC objects

Ray trace objects that are Boolean combinations of simpler objects. The ray inside

lens L from t3 to t2 and the hit time is t3.If the lens is opaque, the familiar shading rules

will be applied to find what color the lens is at the hit spot. If the lens is mirror like or

transparent spawned rays are generated with the proper directions and are traced as

shown in figure 5.18.

Ray,first strikes the bowl at t1,the smallest of the times for which it is in S1 but not

in either S2 or C. Ray 2 on the other hand,first hits the bowl at t5. Again this is the

smallest time for which the ray is in S1,but in neither the other sphere nor the cone.The

hits at earlier times are hits with components parts of the bowl,but not with the bowl

itself.

5.10.2 Data Structure for Boolean objects

Since a compound object is always the combination of two other objects say obj1

OP Obj2, or binary tree structure provides a natural description.

5.10.3 Intersecting Rays with Boolean Objects

We need to be develop a hit() method to work each type of Boolean object.The

method must form inside set for the ray with the left subtree,the inside set for the ray with

the right subtree,and then combine the two sets appropriately.

bool Intersection Bool::hit(ray in Intersection & inter)

{

Intersection lftinter,rtinter;

if (ray misses the extends)return false;

if (C) left −>hit(r,lftinter)||((right−>hit(r,rtinter)))

return false;

return (inter.numHits > 0);

}

CS2401 COMPUTER GRAPHICS UNIT V

27

Extent tests are first made to see if there is an early out.Then the proper hit()

routing is called for the left subtree and unless the ray misses this subtree,the hit list rinter

is formed.If there is a miss,hit() returns the value false immediately because the ray must

hit dot subtrees in order to hit their intersection.Then the hit list rtInter is formed.

The code is similar for the union Bool and DifferenceBool classes. For

UnionBool::hit(),the two hits are formed using

if((!left-)hit(r,lftInter))**(|right-)hit(r,rtinter)))

return false;

which provides an early out only if both hit lists are empty.

For differenceBool::hit(),we use the code

if((!left−>hit(r,lftInter)) return false;

if(!right−>hit(r,rtInter))

{

inter=lftInter;

return true;

}

which gives an early out if the ray misses the left subtree,since it must then miss the

whole object.

5.10.4 Building and using Extents for CSG object
The creation of projection,sphere and box extend for CSG object. During a

preprocessing step,the true for the CSG object is scanned and extents are built for each

node and stored within the node itself. During raytracing,the ray can be tested against

each extent encounted,with the potential benefit of an early out in the intersection process

if it becomes clear that the ray cannot hit the object.

CS2401 COMPUTER GRAPHICS UNIT V

28

