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Mathematical Logic
INTRODUCTION

Proposition: A proposition or statement is a declarative sentence which is either
true or false but not both. The truth or falsity of a proposition is called its truth-value.

These two values _true‘ and _false* are denoted by the symbols T and F
respectively. Sometimes these are also denoted by the symbols 1 and O respectively.

Example 1: Consider the following sentences:

1. Delhi is the capital of India.
2.Kolkata is a country.

3. 51is a prime number.
4.2+3=4.

These are propositions (or statements) because they are either true of false.

Next consider the following sentences:

5.How beautiful are you?

6. Wish you a happy new year

7.X+y=12

8. Take one book.

These are not propositions as they are not declarative in nature, that is, they do not
declare a definite truth value T or F.

Propositional Calculus is also known as statement calculus. It is the branch of
mathematics that is used to describe a logical system or structure. A logical system
consists of (1) a universe of propositions, (2) truth tables (as axioms) for the logical
operators and (3) definitions that explain equivalence and implication of propositions.

Connectives
The words or phrases or symbols which are used to make a proposition by two or more
propositions are called logical connectives or simply connectives. There are five basic
connectives called negation, conjunction, disjunction, conditional and biconditional.
Negation

The negation of a statement is generally formed by writing the word _not® at a
proper place in the statement (proposition) or by prefixing the statement with the phrase
_It is not the case that‘. If p denotes a statement then the negation of p is written as p and
read as _not p°. If the truth value of p is T then the truth value of p is F. Also if the truth
value of p is F then the truth value of p is T.

Table 1. Truth table for negation

P |-p
T |F
FooT




Example 2: Consider the statement p: Kolkata is a city. Then —-p: Kolkata is not a city.

Although the two statements _Kolkata is not a city® and _It is not the case that Kolkata is a
city* are not identical, we have translated both of them by p. The reason is that both these
statements have the same meaning.

Conjunction
The conjunction of two statements (or propositions) p and q is the statement p A q which is

read as _p and q°. The statement p A g has the truth value T whenever both p and g have the truth
value T. Otherwise it has truth value F.

Table 2. Truth table for conjunction

PAQ

mm—4 o
MmN |
m T T

Example 3: Consider the following statements p : It is
raining today.
q : There are 10 chairs in the room.
Then p A q: Itis raining today and there are 10 chairs in the room.
Note: Usually, in our everyday language the conjunction _and‘ is used between two statements
which have some kind of relation. Thus a statement _It is raining today and 1 + 1 = 2° sounds odd,
but in logic it is a perfectly acceptable statement formed from the statements _It is raining today*
and _1+1=2°
Example 4: Translate the following statement:
_Jack and Jill went up the hill* into symbolic form using conjunction.
Solution: Let p : Jack went up the hill, q : Jill went up the hill.
Then the given statement can be written in symbolic formasp A g.

Disjunction
The disjunction of two statements p and q is the statement p v q which is read as _p or q°.

The statement p v g has the truth value F only when both p and g have the truth value F. Otherwise
it has truth value T.

Table 3: Truth table for disjunction

mmH-d
m—n-
m— -

Example 5: Consider the following statements p : I shall go to the game.

g : I shall watch the game on television.



Then p v q: I shall go to the game or watch the game on television.
Conditional proposition

If p and g are any two statements (or propositions) then the statement p — g which is read as,
_Ifp, then q° is called a conditional statement (or proposition) or implication and the connective
is the conditional connective.

The conditional is defined by the following table:

Table 4. Truth table for conditional

p q pP—Q
T T T
T F F
F T T
F F T

In this conditional statement, p is called the hypothesis or premise or antecedent and q is
called the consequence or conclusion.

To understand better, this connective can be looked as a conditional promise. If the promise
is violated (broken), the conditional (implication) is false. Otherwise it is true. For this reason, the
only circumstances under which the conditional p — q is false is when p is true and q is false.

Example 6: Translate the following statement:

‘The crop will be destroyed if there is a flood’ into symbolic form using conditional
connective.

Solution: Let ¢ : the crop will be destroyed; f : there is a flood.
Let us rewrite the given statement as

_If there is a flood, then the crop will be destroyed‘. So, the symbolic form of the given
statement is f — c.

Example 7: Let p and g denote the statements:

p : You drive over 70 km per hour.

g : You get a speeding ticket.

Write the following statements into symbolic forms.

(i) You will get a speeding ticket if you drive over 70 km per hour.

(it) Driving over 70 km per hour is sufficient for getting a speeding ticket.
(iti) If you do not drive over 70 km per hour then you will not get a speeding ticket.
(iv) Whenever you get a speeding ticket, you drive over 70 km per hour.

Solution: (i) p —» q (i) p — q (i) p — q (iv) ¢ — p.

Notes: 1. In ordinary language, it is customary to assume some kind of relationship between
the antecedent and the consequent in using the conditional. But in logic, the antecedent and the



consequent in a conditional statement are not required to refer to the same subject matter. For
example, the statement _If I get sufficient money then I shall purchase a high-speed computer®
sounds reasonable. On the other hand, a statement such as _If I purchase a computer then this pen is
red’ does not make sense in our conventional language. But according to the definition of
conditional, this proposition is perfectly acceptable and has a truth-value which depends on the
truth-values of the component statements.

2. Some of the alternative terminologies used to express p — q (if p, then q) are the
following: (i) p implies g

(i) ponly if g (_Ifp, then g° formulation emphasizes the antecedent, whereas _p only if
formulation emphasizes the consequent. The difference is only stylistic.)

(iii) q if p, or g when p.
(iv) g follows from p, or g whenever p.

(v) p is sufficient for g, or a sufficient condition for q is p. (vi) q is necessary for p, or a necessary
condition for p is g. (vii) q is consequence of p.
Converse, Inverse and Contrapositive

If P — Q is a conditional statement, then
(1). O — Pis called its converse
(2). =P — —Qis called its inverse
(3). =Q — —Pis called its contrapositive.

Truth table for 9 — P (converse of P — Q)

PIQ|QO—P
TI|T T
T|F T
FIT F
FI|F T
Truth table for =P — —Q (inverse of P — Q)
PIQ|-P|-Q| P—>—0
T|T| F F T
T|F| F T T
FIT| T F F
FIF| T | T T
Truth table for =Q — —P (contrapositive of P — Q)
PIQ|-Q|-P|—-0——-P
T|T| F F T
TIF| T F F
F|T| F T T
FIF| T | T T




Example: Consider the statement
P : It rains.
Q: The crop will grow.

The implication P — Q states that
R: If it rains then the crop will grow.

The converse of the implication P — Q, namely Q — P sates that S: If
the crop will grow then there has been rain.

The inverse of the implication P — Q, namely —P — —( sates that

U: If it does not rain then the crop will not grow.

The contraposition of the implication P — Q, namely ~Q — —P statesthat T : If
the crop do not grow then there has been no rain.

Example 9: Construct the truth table for (p — q) A (Q —p)

p q pP—q q—p P—DA@—Dp)
T T T T T
T F F T F
F T T F F
F F T T T

Biconditional proposition
If p and q are any two statements (propositions), then the statement p<» ¢ which is read as _p if and
only if q° and abbreviated as _p iff q° is called a biconditional statement and the connective is the
biconditional connective.
The truth table of p«—q is given by the following table:

Table 6. Truth table for biconditional

P<q

mm| o
T m|dla
—|m|mn| -

It may be noted that p q is true only when both p and q are true or when both p and q are
false. Observe that p q is true when both the conditionals p — q and g — p are true, i.e., the truth-
values of (p — g) A (g — p), given in Ex. 9, are identical to the truth-values of p q defined here.

Note: The notation p < q is also used instead of p<>q.
TAUTOLOGY AND CONTRADICTION

Tautology: A statement formula which is true regardless of the truth values of the statements
which replace the variables in it is called a universally valid formula or a logical truth or a
tautology.

Contradiction: A statement formula which is false regardless of the truth values of the
statements which replace the variables in it is said to be a contradiction.

Contingency: A statement formula which is neither a tautology nor a contradiction is known
as a contingency.



Substitution Instance
A formula A is called a substitution instance of another formula B if A can be obtained form
B by substituting formulas for some variables of B, with the condition that the same formula
is substituted for the same variable each time it occurs.

Example: LetB: P —> (J A P).
Substitute RS for P in B, we get

()R>80N RI)

Then A is a substitution instance of B.
Note that (R < S) — (J AP) is not a substitution instance of B because the variables

PinJ A P was not replaced by R < S.

Equivalence of Formulas
Two formulas A and B are said to equivalent to each other if and only if A~ B is a
tautology.

If A< B is a tautology, we write A < B which is read as A is equivalent to B.

Note : 1. < is only symbol, but notconnective.
2. A < Bis atautology if and only if truth tables of A and B are the same.
3. Equivalence relation is symmetric and transitive.

Method I. Truth Table Method: One method to determine whether any two statement
formulas are equivalent is to construct their truth tables.

Example: ProveP vV Q < =(=P A =Q).

Solution:
P|Q|PVQ|=P|-Q[=PA=Q|=(-PA=Q)|(PVQ) & ~(-PA-Q
TI|T T F F F T T
TI|F T F T F T T
FIT T T F F T T
F|F F T T T F T

AsPVQ  —(=P A-Q)isatautology,thenP vV Q < —(=P A Q).
Example: Prove (P — Q) < (=P Vv Q).

Solution:
PIQ|P—>Q|-P|-PVQ (P— Q) (=P VvQ)
T|T T F T T
T|F F F F T
FIT T T T T
F|F T T T T

As (P — Q) (=P Vv Q) is atautology then (P — Q) < (=P Vv Q).



Equivalence Formulas:
1. Idempotent laws:

@PVP<P b)PAP <P
2. Associative laws:

@PVQ VR<PV(QVR) M PAQ ARSPA(QAR)
3. Commutative laws:

@PVQeQVP MPAQ=QAP
4. Distributive laws:

PVQAR) (PVQ A((PVR) PAQVR)&(PAQ V(PAR)

5. Identity laws:

@@WPVF<P (i) PVT=T

(b) )PAT <P (ilPAF=F
6. Component laws:

@OPV-P=sT (i) PA-P< F

(b) () ——P = P (i)-TeF,-FeT

7. Absorption laws:

@PVPAQ <P b)PA(PVQ) <P
8. Demorgan‘s laws:

@-(PVvQ)e-PA-Q (b)=(PAQ) <= -PV-Q

Method Il. Replacement Process: Consider a formula A : P — (Q — R). The formula Q — R is a
part of the formula A. If we replace Q — R by an equivalent formula =QVR in A, we get another

formula B : P — (=QVR). One can easily verify that the formulas A and B are equivalent to each
other. This process of obtaining B from A as the replacement process.

Example: ProvethatP — (Q - R) & P — (=Q V R) < (P A Q) — R.(May. 2010)
Solution:P—->(Q—>R) < P—-(-QVR) ["Q—-R< -QVR]
- PVEQVR)[P->Q0<= -PVAQ]
< (=P Vv =Q) V R [by Associative laws]
< =(PAQ) VR [by De Morgan‘s laws]
< (PAQ) —»R[.P—->0< —-PVAQ]
Example: Prove that (P > Q) A (R— Q) < (P V R) — Q.
Solution: P->QQAR—-Q < (-PVQ) A(=RVQ)
& (-PA-R)VQ &

-(PVR)VQe PV
R—Q
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Example: Prove that P — (Q - P) < —P — (P — Q).
Solution: P-(Q—-P)e-PV(Q—-P)

< -PV(-QVP)
< (-PVP)V-Q
< TV -Q
T
and
P> (P—-0)= 2(=P)V (P— Q)
©PV(-PVQ) e
PV-P)VQeT
vVQ
T
So,P—>(Q—P) < —~P— (P— Q).
***Example: Provethat (=P A (FQ AR)) V(QAR) V(P AR) < R. (Nov. 2009)
Solution:

(PA(EQAR)VQAR)V (PAR)

S (PA=Q)AR)V((QVP)AR)  [Associative and Distributive laws]
S ((PVQ AR)V((QVP)AR)  [De Morgan'‘s laws]

< (=(PVQ)V((PVQ)AR [Distributive laws]

<TAR [ -PVP<eT]

< R

**Example: Show ((P V Q) A =(=P A (=Q V =R))) V (=P A =Q) V (=P A =R) istautology.
Solution: By De Morgan‘s laws, we have

~PA=Q&=(PVQ)
-PV-R & =(PAR)
Therefore
(=-PA=-Q)V(-PA-R)< -(PVQ)V-(PAR)
< -=(PVQ)A(PVR)
Also

=(=P A (=Q V =R)) & (=P A =(Q A R))
< PV (QAR)
< (PVQA(PVR)
Hence (PV Q A-(-PA(-QV -R) PVQAPVQAMPVR)
< (PVQAPVR)

Thus ((P \Y Q) A _I(_IP A (—lQ vV _IR))) \Y (_IP A —|Q) V (—IP A —lR)

11



S[PVQAPVRIVA[PVQ)A(PVR)]
T
Hence the given formula is a tautology.
Example: Show that (P A Q) — (P V Q) is a tautology. (Nov. 2009)
Solution:(PAQ) - (PVQ) < -PAQ VPVQI[. P->Q< -PVQ]
< (=PV-Q)V(PVQ) [by De Morgan‘s laws]

< (=P VP)V(-QV Q) [byAssociative laws and commutative
laws]

< (T VT )[by negation laws]

ST
Hence, the result.

Example: Write the negation of the following statements.
(a). Jan will take a job in industry or go to graduate school.
(b). James will bicycle or run tomorrow.
(). If the processor is fast then the printer is slow.
Solution: (a). Let P : Jan will take a job in industry.
Q: Jan will go to graduate school.

The given statement can be written in the symbolicas P v Q.
The negation of P vV Q is given by =(P VvV Q).
-(PV Q) < =P A -Q.

=P A =Q: Jan will not take a job in industry and he will not go to graduate school.
(b). Let P : James will bicycle.
Q: James will run tomorrow.

The given statement can be written in the symbolicas P v Q.
The negation of P vV Q is given by =(P VvV Q).
-(PV Q) & =P A -Q.

=P A =Q: James will not bicycle and he will not run tomorrow.
(c). Let P : The processor is fast.

Q: The printer is slow.
The given statement can be written in the symbolic as P — Q.

The negation of P — Q is given by =(P — Q).

P A =Q: The processor is fast and the printer is fast.

Example: Use Demorgans laws to write the negation of each statement.
(@). I want a car and worth a cycle.
(b). My cat stays outside or it makes a mess.
(c). I've fallen and I can‘t get up.
(d). You study or you don‘t get a good grade.

Solution:  (a). I don‘t want a car or not worth a cycle.

(b). My cat not stays outside and it does not make a mess.

12



(). I have not fallen or | can get up.
(d). You can not study and you get a good grade.

Exercises: 1. Write the negation of the following statements.

(a). If it is raining, then the game is canceled.
(b). If he studies then he will pass the examination.

Are (p — q) — rand p — (¢ — r) logically equivalent? Justify your answer by using the
rules of logic to simply both expressions and also by using truth tables. Solution: (p — ¢) —
rand p — (¢ — r) are not logically equivalent because
Method I: Consider

p—qg)—res(CpVa)—r
S a(pvoVvre

(PA=Q)Vr

S PANV(AQAT)
and

p—(g—r)< p—(=qVr)
S -pVv(qVr e

-pV -oqVr.
Method I1: (Truth Table Method)
pla|r|p—og|pog—r|g—or|polg—r)
T|T|T T T T T
T|T|F T F F F
TIF|T F T T T
T|F|F F T T T
FITI|T T T T T
F|TI|F T F F T
FIF|T T T T T
F|FI|F T F T T

Here the truth values (columns) of (»p — ¢g) — r and p — (¢ — r) are not identical.

Consider the statement: IIf you study hard, then you will excell. Write its converse,
contra positive and logical negation in logic.

Duality Law

Two formulas A and A* are said to be duals of each other if either one can be obtained from the

other by replacing A by Vv and V by A. The connectives V and A are called duals of each other. If the

formula A contains the special variable T or F, then A*, its dual is obtained by replacing T by F and

F by T in addition to the above mentioned interchanges.
Example: Write the dual of the following formulas:

13



@M. PVQ) AR (i).PAQVT (iii). (P A Q) vV (P vV =(Q A =S))
Solution: The duals of the formulas may be written as

H.PAQ) VR (i).(PVQ)AF (ii). P VQ) A (P A =(Q V =Y))
Result 1: The negation of the formula is equivalent to its dual in which every variable
is replaced by its negation.

We can prove

—lA(Pl, P2, veny Pn) < A*(—lP]_, —IP2, ey —-Pn)

Example: Prove that (a). -(P A Q) — (=P V (=P vV Q)) < (=P Vv Q)
(b). PV Q) A (=P A (=P AQ)) = (=PAQ)

Solution: (3).=(PAQ)—> (=-PV (=P VQ) & (PAQ V(-PV(=PVQ)) ["P—>Q < =PV Q]
< PAQV(=PVQ)
< PAQV-APVAQ
< (PAQV =P)VQ
S (PV-P)A@QV=P)VQ
< (TAQV-P)VQ
< QVv-P)VvaQ
<QV-P

&PV Q
(b). From (a)

Writing the dual

(PVQA(=PA(=PAQ)) = (=P AQ)

Tautological Implications

A statement formula A is said to tautologically imply a statement B if and only if 4 — B
is a tautology.

In this case we write A = B, which is read as ‘A implies B°.
Note: = is not a connective, A = B is not a statement formula.
A = B states that 4 — B is tautology.
Clearly A = B guarantees that B has a truth value T whenever A has the truth value T .
One can determine whether A = B by constructing the truth tables of A and B in the same manner as

was done in the determination of A < B. Example: Prove that (P — Q) = (—-Q — —P).

14



Solution:

PI[Q|P| QPO | 0—>~"P| (Po0)—>(C0—"P)
T|T|F|F T T T
T|F|F | T F F T
FIT| T |F T T T
FIF| T | T T T T

Since all the entries in the last column are true, (P — Q) — (—Q — —P) isa
tautology.

Hence (P — Q) = (-0 — —P).
In order to show any of the given implications, it is sufficient to show that an
assignment of the truth value T to the antecedent of the corresponding condi-

tional leads to the truth value T for the consequent. This procedure guarantees that the
conditional becomes tautology, thereby proving the implication.

Example: Prove that -Q A (P — Q) = -P.

Solution: Assume that the antecedent =Q A (P — Q) has the truth value T , then both —=Q and P —
Q have the truth value T , which means that Q has the truth value F , P — Q has the truth value T .
Hence P must have the truth value F .

Therefore the consequent =P must have the truth value T.

Another method to show A = B is to assume that the consequent B has the truth value F and then
show that this assumption leads to A having the truth value F . Then 4 — B must have the truth
value T .

Example: Show that =(P — Q) = P.

Solution: Assume that P has the truth value F. When P has F, P — Q has T, then =(P — Q) has F
. Hence =(P —> Q) > PhasT.

Other Connectives

We introduce the connectives NAND, NOR which have useful applications in the design of
computers.
NAND: The word NAND is a combination of ‘NOT* and ‘AND*‘ where ‘NOT* stands for negation
and ‘AND* for the conjunction. It is denoted by the symbol 1.

If P and Q are two formulas then

P1Qe-(PAQ)

The connective 1 has the following equivalence:
PTP@ —l(P/\P)<:>—|P\/—|P<:>—IP.

15



P1QT(P1Q = ~(P1Q) = ~(=(PAQ)) =PAQ.
(PTP)TQTQ & -P1-Qe=(-PA-Q)=PVQ.

NAND is Commutative: Let P and Q be any two statement formulas.

(P10) <= =(PAQ)
< -(QAP)e
©1°)

.. NAND is commutative.
NAND is not Associative: Let P, Q and R be any three statement formulas.

Consider 1(QTR)= ~(PA(QTR)) < (P A(—(QAR)))
< =PV (Q AR))

PTO)TR=-(PAQ)TR
@ﬁ(‘l(P/\Q)/\R)@

(PAQ)V-R
Therefore the connective 1 is not associative.
NOR: The word NOR is a combination of “‘NOT* and ‘OR‘ where ‘NOT* stands for negation and
_OR® for the disjunction. It is denoted by the symbol |.
If P and Q are two formulas then

PIlQe-(PVQ

The connective | has the following equivalence:
PP a(PVP)s -PA-P< —P.
PLQIPIQ=~(PlQ=-(=(PVQ)=PVQ.
(PIP)I(QIQ) = -P|-Q==(=PV-Q)=PAQ.

NOR is Commutative: Let P and Q be any two statement formulas.

(PlO)= =(PVQ)
< -QVP)e
(QlP)

.. NOR is commutative.
NOR is not Associative: Let P, Q and R be any three statement formulas. Consider

PL(Q]R) = =(PV(Q|R)
< (P V (=(Q VR)
< -PA(QVR)
PIQIR==(PVQ)IR
< =a(=(PVQ) VR <
(PV Q) A -R
Therefore the connective | is not associative.

Evidently, P 1 Q and P | Q are duals of each other.
Since

16



~(PAQ) < —PV-Q

-(PVQ)<-PA-Q.
Example: Express P | Q interms of 1 only.
Solution:
19= =(PVQ)

= PVvQTPVQ

S[P1P)T(@TOITIPTP)T(QTO)]
Example: Express P 1 Q interms of | only. (May-2012)

Solution: 1Q< -(PAQ)
S PAQLI(PAQ)

S[PLP)L@LOILIPLIP)L(QL O]
Truth Tables

Example: Show that (A @ B) v (A | B) < (A 1 B). (May-2012)
Solution: We prove this by constructing truth table.

A| BA®B| A|B| (A®B)V (4/B) | A1B
T 1 F F F F
T|F T F T T
Fl 7 7 F T T
F| F| F T T T

As columns (A @ B) V(4 | B) and (4 1 B) are identical.
. (A®B)V (4]B)< (41B).

Normal Forms

If a given statement formula A(p1, p2, ...pn) involves n atomic variables, we have 2"
possible combinations of truth values of statements replacing the variables.
The formula A is a tautology if A has the truth value T for all possible assignments of the

truth values to the variables p1, p2, ...pnand A is called a contradiction if A has the truth
value F for all possible assignments of the truth values of the n variables. A is said to be satis

able if A has the truth value T for atleast one combination of truth values assigned to p1, p2,

...Ppn.
The problem of determining whether a given statement formula is a Tautology, or a

Contradiction is called a decision problem.

The construction of truth table involves a finite number of steps, but the construc-tion
may not be practical. We therefore reduce the given statement formula to normal form and
find whether a given statement formula is a Tautology or Contradiction or atleast satisfiable.

It will be convenient to use the word Iproductl in place of Iconjunctionl and Isuml in
place of Idisjunctionl in our current discussion.
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A product of the variables and their negations in a formula is called an elementary
product. Similarly, a sum of the variables and their negations in a formula is called an
elementary sum.

Let P and Q be any atomic variables. Then P, =P AQ, -QAP =P ,P =P ,and Q A =P
are some examples of elementary products. On the other hand, P, =P vV Q,-Q VP V =P, P

VvV =P ,and Q VvV =P are some examples of elementary sums.
Any part of an elementary sum or product which is itself an elementary sum or product is

called a factor of the original elementary sum or product. Thus =Q,A =P, and =Q A P are

some of the factors of -Q A P A =P .
Disjunctive Normal Form (DNF)

A formula which is equivalent to a given formula and which consists of a sum of elementary
products is called a disjunctive normal form of the given formula.

Example: Obtain disjunctive normal forms of

(@) P A(P—Q); (b) ~(P vV Q) = (P AQ).

Solution: (a) We have
PAP—->Q) < PA(=PVQ
< (PA=P)V(PAQ)
(b) =(PVQ)<(PAQ)
< (PVQAPAQ)V(PVQA(PA Q) [using
R>S< (RAS)V (=R A =S)
< (P A=QAPAQ)V(PV QA (=PV Q)
S (APA-QAPAQ V(PVQ A=P)V((PV Q) A-Q)
S (PA-QAPAQ)V(PA=P)V(QA=P)V(PA-Q)V(QA-Q)

which is the required disjunctive normal form.

Note: The DNF of a given formula is not unique.

Conjunctive Normal Form (CNF)

A formula which is equivalent to a given formula and which consists of a product of elementary
sums is called a conjunctive normal form of the given formula.

The method for obtaining conjunctive normal form of a given formula is similar to the one
given for disjunctive normal form. Again, the conjunctive normal form is not unique.
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Example: Obtain conjunctive normal forms of
@ PAP—Q) (b) =(P v Q)< (P AQ).
Solution: (a).PA(P— Q) < P A (=P VvV Q)
(b).=(P vV Q) (P AQ)

S (EPVQA-PAQIA(PAQ —~(PVQ)
S((PVQVEPAQ)A(=PAQ YV =(PVQ)
S [PVQVP)APVQVQIAI=PYV =Q)V (=P A =Q)]
@(P\/Q\/P)/\(P\/Q\/Q)/\(—lPV—IQ\/—IP)/\(—lp\/—lQ\/—lQ)

Note: A given formula is tautology if every elementary sum in CNF is tautology.

Example: Show that the formula Q vV (P A =Q) V (=P A =Q) is a tautology.
Solution: First we obtain a CNF of the given formula.

QVEPA-QV(EPA-Q = QV(PV-P)A-Q)
< Qv ({PVvaP)AQV Q)

@(Q\/P\/—IP)/\(Q\/—IQ)
Since each of the elementary sum is a tautology, hence the given formula is tautology.

Principal Disjunctive Normal Form
In this section, we will discuss the concept of principal disjunctive normal form (PDNF).

Minterm: For a given number of variables, the minterm consists of conjunctions in which each
statement variable or its negation, but not both, appears only once.

Let P and Q be the two statement variables. Then there are 22 minterms given by P A Q, P A =Q,
=P A Q,and =P A =Q.

Minterms for three variablesP,QandRarePAQ AR, PAQA-R,PA-Q ARPA-=Q A =R, =P

AQAR,=PAQA=R,=PA=QARand-=P A =Q A =R. Fromthe truth tables of these minterms
of Pand Q, it is clear that

P{Q|PAQ|PA=Q|-PAQ|-PA-Q
T|(T| T F F F
T|F| F T F F
FIT| F F T F
FIF| F F F T

(i). no two minterms are equivalent
(i). Each minterm has the truth value T for exactly one combination of the truth values of the
variables P and Q.
Definition: For a given formula, an equivalent formula consisting of disjunctions of minterms only
is called the Principal disjunctive normal form of the formula.
The principle disjunctive normal formula is also called the sum-of-products canonical form.
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Methods to obtain PDNF of a given formula

(a). By Truth table:

(). Construct a truth table of the given formula.

(i1). For every truth value T in the truth table of the given formula, select the minterm which
also has the value T for the same combination of the truth values of P and Q.

(iii). The disjunction of these minterms will then be equivalent to the given formula.

Example: Obtain the PDNF of P — Q.
Solution: From the truth table of P — O

P[Q| P— Q| Minterm
T|T T PAQ
T|F F PA-Q
FIT T -PAQ
FIF T -PA=Q

The PDNFof P — Qis (P A Q) V (=P A Q) V (=P A =Q).
S P>Qe (PAQ) V(=PAQ)V (=P A=Q).
Example: Obtainthe PDNFfor (P AQ) V (=P AR) V (Q AR).

Solution:
P|Q|R Minterm PAQ|-PAR|QAR|[(PAQV(=PARV (QAR)
T|(T|T| PAQAR T F T T
T|T|F| PAQA-R T F F T
T|F|T| PA-QAR F F F F
T|F|F|PA=QA-R| F F F F
FIT|T| -PAQAR F T T T
FIT|F|-PAQA-R| F F F F
FI|F|T|-PA-QAR| F T F T
FIF|F|-PA-QA-R| F F F F

The PDNFof (P A Q) V (=P AR) V (Q A R) is
PAQARVPAQA=R)V(-PAQAR)V (=P A -Q AR).

(b). Without constructing the truth table:

In order to obtain the principal disjunctive normal form of a given formula is con-
structed as follows:
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First replace —, by their equivalent formula containing only A, Vv and —.

@ Next, negations are applied to the variables by De Morgan‘s laws followed by the
application of distributive laws.

@ Any elementarily product which is a contradiction is dropped. Minterms are ob-tained in
the disjunctions by introducing the missing factors. Identical minterms appearing in the
disjunctions are deleted.

Example: Obtain the principal disjunctive normal form of

@-PvQ;b)(PAQ)V (=PAR)V(QAR).
Solution:

(@) “PVQe (-PAT)VQAT) [ AAT< A]
S EPAQV-Q)VQAPY-P)[ PV-PeT]
S (FPAQV(EPA-QVQAP)V(QA=P)
["PAQVR & (PAQV (PAR)
& (=PAQV(EPA-QVPAQ [ PVPeP]
(b)(PAQ) V(=P AR)V(QAR)

S (PAQAT)V(EPARAT)V(QARAT)

S PAQARV-R)V(=PARA(QV -Q)V(QARA(PV =P))

S PAQARVPAQA=R)V(-PARAQ)=PARA-Q)

VQARAP)V(QARA=P)
S PAQARVPAQA-R)V(-PAQAR)V (=P A -QAR)

PVIPAQ &P

PV(EEPAQ & PVAQ
Solution: We write the principal disjunctive normal form of each formula and com-pare these
normal forms.

@PV(PAQ & (PAT)V(PAQ) [ PAQ<P]
SPAQV-Q)V((PAQ) [PV P &T]
< (PAQ)V (PA=Q)V (PA Q)[by distributive laws]

S PAQV(PA-Q)[. PVP<P]
which is the required PDNF.

Now, < PAT

< PA(QV-Q)

< (PAQ)V(PA-Q)
which is the required PDNF.
Hence, PV(PAQ) < P.
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PV (APAQ & PAT)V (P AQ)

< PAQV-Q)V (=P AQ)

S(PAQV(PA-Q)V(=PAQ)
which is the required PDNF.

Now,
PVQe PAT)VIQAT)

S PAQV-Q)VQAPV=P)
S PAQVPA-QVQAP)V(QA-P)

S PAQV(PA=Q)V(=PAQ)
which is the required PDNF.

Hence, PV(EEPAQ < PVAQ.
Example: Obtain the principal disjunctive normal form of

P—(P—>Q)A=(=QV=P)). (Nov. 2011)

Solution: Using P — Q < =P Vv Q and De Morgan‘s law, we obtain

= (P> 0) A =(-QV =P)) & P
VPV QA QAP)

© PV(-PAQAP)VQAQAP) e
-PVFV((PAQ)

& =PV (PAQ)

S (PAT)V(PAQ

< (PAQV-Q)V(PAQ)
& (=PAQ)V (=P A=Q)V (P AQ)

Hence (P A Q) V (=P A Q) V (=P A =Q) isthe required PDNF.

Principal Conjunctive Normal Form

The dual of a minterm is called a Maxterm. For a given number of variables, the maxterm consists
of disjunctions in which each variable or its negation, but not both, appears only once. Each of the
maxterm has the truth value F for exactly one com-bination of the truth values of the variables. Now
we define the principal conjunctive normal form.
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For a given formula, an equivalent formula consisting of conjunctions of the max-terms only is
known as its principle conjunctive normal form. This normal form is also called the product-of-sums
canonical form.The method for obtaining the PCNF for a given formula is similar to the one
described previously for PDNF.

Example: Obtain the principal conjunctive normal form of the formula (—P—R)A(Q<«>P)
Solution:
(tP—R) A (Q<P)
< [F(=P)VRIAQ—P) A (P—O)]
S PVRA[EQVP)A (=P V Q)
S PVRVEA[RQVPVFEF)A(EPYVYQVEF)
S [PVRVQA-QIA[-QVP)VRA-RIA[=PVQV(RA-R)]
S PVRVQAPVRV-QQAPV-QVR)A(PV =QV -R)
A(=PVQVR)A(=PVQV -R)
SPVQVR)IAPV-QVRIAPV-QV-R)A(RPVQVR)A(=-PVQV=R)

which is required principal conjunctive normal form.

Note: If the principal disjunctive (conjunctive) normal form of a given formula A containing n
variables is known, then the principal disjunctive (conjunctive) normal form of —=A will consist of
the disjunction (conjunction) of the remaining minterms (maxterms) which do not appear in the

principal disjunctive (conjunctive) normal form of A. From A < ——A one can obtain the principal
conjunctive (disjunctive) normal form of A by repeated applications of De Morgan‘s laws to the
principal disjunctive (conjunctive) normal form of —A.

Example: Find the PDNF form PCNFof S: P VvV (=P — (Q V (=Q — R))).
Solution:

S PV (EP—-QV(Q—R)
S PV (=(=P)V(QV(=(=Q) VR)
< PV(PVQV(QVR)

< PV((PVQVR)

< PV QVR

which is the PCNF.
Now PCNF of =S is the conjunction of remaining maxterms, so

PCNFof=S:(PV QV -R)A PV =QVR)A(PV =QV =R) A (=P V Q V R)

AEFEPVQV-R)A(=PV-=QVR)A(=PV-QV-R)
Hence the PDNF of S is

“(PCNFof=S): (P A - QAR)V(-PAQA-R)V (=PAQAR)V (P A-QA-R)
V(PA=QAR)V(PAQA-R)V(PAQAR)
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Theory of Inference for Statement Calculus

Definition: The main aim of logic is to provide rules of inference to infer a conclusion from
certain premises. The theory associated with rules of inference is known as inference theory .

Definition: If a conclusion is derived from a set of premises by using the accepted rules of
reasoning, then such a process of derivation is called a deduction or a formal proof and the argument
is called a valid argument or conclusion is called a valid conclusion.

Note: Premises means set of assumptions, axioms, hypothesis.

Definition: Let A and B be two statement formulas. We say that IB logically follows from Al or

IB is a valid conclusion (consequence) of the premise Al iff 4 — B is a tautology, that is A = B.
We say that from a set of premises {Hz, H, - - -, Hm}, a conclusion C follows logically iff

HiA H2A ... AHn=> C

1)
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Note: To determine whether the conclusion logically follows from the given premises, we use the
following methods:

e Truth table method

e Without constructing truth table method.

Validity Using Truth Tables

Given a set of premises and a conclusion, it is possible to determine whether the
conclusion logically follows from the given premises by constructing truth tables as follows.

Let P1, P2, - - -, Pn be all the atomic variables appearing in the premises H1, Hz, - - -, Hnand
in the conclusion C. If all possible combinations of truth values are assigned to P1, P2, - - -, Pnand if
the truth values of H1, Ho, ..., Hm and C are entered in a table. We look for the rows in which all Hz,

H2, - - -, Hm have the value T. If, for every such row, C also has the value T, then (1) holds. That is,
the conclusion follows logically.

Alternatively, we look for the rows on which C has the value F. If, in every such row, at

least one of the values of H1, Hp, - - -, Hmis F, then (1) also holds. We call such a method a
_truth table technique® for the determination of the validity of a conclusion.

Example: Determine whether the conclusion C follows logically from the premises
H1 and Ha.
@H1:P—>Q Hx:P C:Q
(b)H1:P—>Q H2:=P C:Q
(c)H1:P—>Q H2:=(PAQ)C:=P
(d) Hy: =P H2:PQC:=(P AQ)

(e)H1:P -0 H2:QC:P
Solution: We first construct the appropriate truth table, as shown in table.

PlQ|P>0|-P|-(PAQ]| PQ
T(T| T F F T
TIF| F F T F
FIT] T | T T F
FIF] T | T T T
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(@) We observe that the first row is the only row in which both the premises have the value T
. The conclusion also has the value T in that row. Hence it is valid.

In (b) the third and fourth rows, the conclusion Q is true only in the third row, but not in the
fourth, and hence the conclusion is not valid.
Similarly, we can show that the conclusions are valid in (c) and (d) but not in (e).

Rules of Inference
The following are two important rules of inferences.
Rule P: A premise may be introduced at any point in the derivation.

Rule T: A formula S may be introduced in a derivation if S is tautologically implied by
one or more of the preceding formulas in the derivation.

Implication Formulas

l1:PAQ=P (simplification)

2:PAQ=0Q

I3:P=>PVQ

14:0=>PVQ

I5: =P = P—Q

lg:Q=>P— 0

l7:~(P—>Q)=>P

lg: =(P— Q) = =Q

lg ;.P, Q=>PAQ

Ilol -P,PVQ=Q (disjunctive syllogism)

u: LP->0=0Q (modus ponens)

:12 . O, P—>0=-P (modus tollens)

|13 - P> 0 0—>R=>P->R (hypothetical syllogism)
u:PVQOP—->RQO—->R>R (dilemma)

Example: Demonstrate that R is a valid inference from the premises P — O, Q0 — R,and P .
Solution:

{1} Q) P—Q Rule P
{2} 2 P Rule P,
{1, 2} 3) Q Rule T, (1), (2), and 113
{4} 4 O—R Rule P
{1, 2, 4} B) R Rule T, (3), (4), and 113

Hence the result.
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Example: Show that RV'S follows logically from the premises C vD, (C VD) —» ~H, ~H — (A A
-B),and (A A-B)—> (R VYS).

Solution:
{1} 1) (CvD)——H Rule P
{2} (2) ~H— (A A —B) Rule P
{1, 2} (3) (Cv D)— (AN -B) Rule T, (1), (2), and 113
{4} 4 (AAN-B)—(RVYS) Rule P
{1, 2, 4} ®5) (CvD)—-RVYS) Rule T, (3), (4), and 113
{6} (6) CvD Rule P
{1, 2, 4, 6} (7) RVS Rule T, (5), (6), and l11

Hence the result.

Example: Show that S VR is tautologically implied by (P VQ)A(P — R)A(Q — S).

Solution:

{1} 1) PVvQ Rule P

{1} 2 P-0 RuleT,)) P> Q< =PV Q
{3} B 0-S8 Rule P

{1, 3} 4 —-P—>S Rule T, (2), (3), and 113

{1, 3} 5) S—>P RuleT, (4),P—->Q & -Q—-P
{6} 6) P—>R Rule P

{1, 3, 6} (7 -S—R Rule T, (5), (6), and 113

{1,3,6} (8) SVR RuleT,(7)andP - Q < =P Vv Q

Hence the result.

Example: Show that R A (P Vv Q) is a valid conclusion from the premises P Vv Q,

O — R, P— M, and =M.

Solution:

{1} Q) P->M Rule P

{2} 2) -M Rule P

{1, 2} (3 =P Rule T, (1), (2), and 12
{4} 4 PVvQ Rule P

{1, 2, 4} 5) Q Rule T, (3), (4), and l10
{6} 6) O—R Rule P
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{1,246 (7) R Rule T, (5), (), and I11

{1,2,4,6} (8) RAPVQ Rule T, (4), (7) and Ig
Hence the result.

Example: Show l12: =Q, P> QO = —P.

Solution:

{1} (1 P-0 Rule P

{1} (2) ~Q—~-P Rule T, (1),and P > Q & =Q — =P
{3} (3) -Q Rule P

{13 4) -P Rule T, (2), (3), and I11

Hence the result.
Example: Test the validity of the following argument:

ITf you work hard, you will pass the exam. You did not pass. Therefore, you did not work
hardl.

Example: Test the validity of the following statements:
ITf Sachin hits a century, then he gets a free car. Sachin does not get a free car.
Therefore, Sachin has not hit a centuryl.
Rules of Conditional Proof or Deduction Theorem
We shall now introduce a third inference rule, known as CP or rule of conditional proof.
Rule CP: If we can derive S from R and a set of premises, then we can derive R — S from the set

of premises alone.
Rule CP is not new for our purpose her because it follows from the equivalence
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PAR)»S<P—>(R—-YS)

Let P denote the conjunction of the set of premises and let R be any formula. The above

equivalence states that if R is included as an additional premise and S is derived from P AR, then
R — S can be derived from the premises P alone.

Rule CP is also called the deduction theorem and is generally used if the conclu-sion of the form
R — S. In such cases, R is taken as an additional premise and S is derived from the given
premises and R.

Example: Show that R — S can be derived from the premises P — (Q — S), "R vV P, and Q.
(Nov. 2011)

Solution: Instead of deriving R — S, we shall include R as an additional premise and show S
first.

{1 (1) RVP Rule P

{2} 2 R Rule P (assumed premise)
{1, 2} 3 P Rule T, (1), (2), and l10
{4} 4 P—->(Q—-Y9 Rule P

{1, 2,4} 5) 0—S Rule T, (3), (4), and I11
{6} 6 Q Rule P

{1,2,4,6} (7) S Rule T, (5), (6), and I11
{1, 2, 4, 6} B8 R—-S Rule CP

Example: Show that P — S can be derived from the premises =P vV Q, =-Q V R,and R — S.
Solution: We include P as an additional premise and derive S.

{1} LH-PVQ Rule P
{2} 2 P Rule P (assumed premise)
{1, 2} (3) Q Rule T, (1), (2), and I10
{4} 4 -QVR Rule P

{1, 2, 4} 5) R Rule T, (3), (4), and l10
{6} 6) R—S Rule P

{1,2,4,6} (7) S Rule T, (5), (6), and l11
{1,2,4,6} (8) P—S Rule CP

Example: _If there was a ball game, then traveling was difficult. If they arrived on time, then
traveling was not difficult. They arrived on time. Therefore, there was no ball game‘. Show that
these statements constitute a valid argument. Solution: Let us indicate the statements as follows:

P : There was a ball game.

Q: Traveling was difficult.

R: They arrived on time.
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Hence, the given premises are P — Q, R — —Q, and R. The conclusion is =P .

{1} LOR—->—0 Rule P

{2} 2R Rule P

{1, 2} (3) =Q Rule T, (1), (2), and I11

{4} 4HPrP—-Q Rule P

{4} (5) ~Q — —P Rule T, (4),andP - Q & =-Q — =P
{1, 2, 4} (6) -P Rule T, (3), (5), and 111

Example: By using the method of derivation, show that following statements con-stitute a valid
argument: IIf A works hard, then either B or C will enjoy. If B enjoys, then A will not work hard.
If D enjoys, then C will not. Therefore, if A works hard, D will not enjoy.

Solution: Let us indicate statements as follows:

Given premises are P — (QVR), Q — —P, and S — =R. The conclusion is P — —S.
We include P as an additional premise and derive —S.

{1} QP Rule P (additional premise)

{2} 2P—(@QVR) Rule P

{1, 2} 3)QVR Rule T, (1), (2), and I11

{1, 2} 4 —0O0—-R RuleT,(3)and P> Q < PV Q
{1, 2} 6) R—-0 Rule T, (4),and P > Q < =Q — =P
{6} 6 09—-pP Rule P

{1, 2, 6} (7) _R—>—P Rule T, (5), (6), and I13

{1, 2, 6} 8 P—R Rule T, (7)and P > Q < —~Q — —P
{9} 9 S—-R Rule P

{9} (10) R——S Rule T, (9)and P - Q < -Q — =P
{1,2,6,9} (11) P— =S Rule T, (8), (10) and I13

{1,2,6,9} (12) =S Rule T, (1), (11) and I11

Example: Determine the validity of the following arguments using propositional logic:
ISmoking is healthy. If smoking is healthy, then cigarettes are prescribed by physi-
cians. Therefore, cigarettes are prescribed by physiciansl. (May-2012)

Solution: Let us indicate the statements as follows:
P : Smoking is healthy.
Q: Cigarettes are prescribed by physicians.

Hence, the given premises are P, P — Q. The conclusion is Q.
{1} Q) P—0 Rule P
{2} 2 P Rule P
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{1, 2} 3)Q Rule T, (1), (2), and 111
Hence, the given statements constitute a valid argument.

Consistency of Premises
A set of formulas H1, H2, - - -, Hm is said to be consistent if their conjunction has the
truth value T for some assignment of the truth values to the atomic variables appearing in H1, Hp,

-, Hm.
If, for every assignment of the truth values to the atomic variables, at least one of the

formulas H1, Ho, - - -, Hm is false, so that their conjunction is identically false, then the formulas
H1, Ho, - - -, Hmare called inconsistent.

Alternatively, a set of formulas H1, Hp, - - -, Hm is inconsistent if their conjunction implies a
contradiction, that is,

HiAH>A - AHm=RA =R
where R is any formula.

Example: Show that the following premises are inconsistent:
(1). If Jack misses many classes through illness, then he fails high school.
(2). If Jack fails high school, then he is uneducated.
(3). If Jack reads a lot of books, then he is not uneducated.
(4). Jack misses many classes through illness and reads a lot of books.
Solution: Let us indicate the statements as follows:
E: Jack misses many classes through illness.
S: Jack fails high school.
A: Jack reads a lot of books.
H: Jack is uneducated.

The premisesare £ — S, S — H, A — —H,and E A A.

{1} Q) E—S Rule P

{2} 2 S—H Rule P

{1, 2} () E—H Rule T, (1), (2), and 113

{4} 4 A—-—H Rule P

{4} (5) H— 4 Rule T, (4),and P > 0 © —Q — —P
{1, 2, 4} 6) E——4 Rule T, (3), (5), and 113

{1, 2, 4} (7) ~EV -A RuleT,(6)and P - Q < =PV Q
{1, 2, 4} 8) —(EAA) RuleT, (7),and =(P A Q) & =P vV =Q
{9} 9 EAA Rule P

{1,249} (10) ~(EAAVA(EAA) RuleT, (8),(9)and Ig

Thus, the given set of premises leads to a contradiction and hence it is inconsistent.
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Example: Show that the following set of premises is inconsistent: |If the contract is valid, then
John is liable for penalty. If John is liable for penalty, he will go bankrupt. If the bank will loan
him money, he will not go bankrupt. As a matter of fact, the contract is valid, and the bank will
loan him money.|

Solution: Let us indicate the statements as follows:
V : The contract is valid.
L: John is liable for penalty.
M: Bank will loan him money.

B: John will go bankrupt.

{1} (1) V—L Rule P

{2} (2 L—B Rule P

{1, 2} 3 V—B Rule T, (1), (2), and 113

{4} 4) M— —B Rule P

{4} 5) M——~M Rule T, (4),and P > Q & —~Q — —P
{1, 2, 4} 6) VoM Rule T, (3), (5), and 113

{1,2,4y (7)) "V V =M Rule T, (6)and P —> Q < =P Vv Q
{1, 2, 4} 8) —~(VAM) RuleT, (7),and =(P A Q) & =P VvV =Q
{9} (9 VAM Rule P

{1,2,4,9} (10)~(VAM)A(VAM)RuUeT, (8),(9)and g
Thus, the given set of premises leads to a contradiction and hence it is inconsistent.

Indirect Method of Proof

The method of using the rule of conditional proof and the notion of an inconsistent
set of premises is called the indirect method of proof or proof by contradiction.

In order to show that a conclusion C follows logically from the premises Hi, Hp, - - -,

Hm, we assume that C is false and consider —C as an additional premise. If the new set of
premises is inconsistent, so that they imply a contradiction. Therefore, the assump-tion that —C is
true does not hold.

Hence, C is true whenever H1, Ho, - - -, Hmy are true. Thus, C follows logically from
the premises H1, H2, - - -, Hm.
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Example: Show that =(P A Q) follows from =P A =Q.

Solution: We introduce =—(P AQ) as additional premise and show that this additional premise
leads to a contradiction.

{1} (1) (P A Q) Rule P (assumed)

{1} )P AQ Rule T, (1), and =—=P < P
{1} )P Rule T, (2), and 11

{4} (4) P A =Q Rule P

{4} (5) =P Rule T, (4), and 11

{1, 4} (6)P A =P Rule T, (3), (5), and Ig

Hence, our assumption is wrong.
Thus, =(P A Q) follows from =P A =Q.

Example: Using the indirect method of proof, show that

P—>Q O—R ~(PAR),PVR=R
Solution: We include =R as an additional premise. Then we show that this leads to a
contradiction.

{1} QP—-Q Rule P

{2} 0—R Rule P

{1, 2} 3)P—R Rule T, (1), (2), and 113
{4} (4 -R Rule P (assumed)

{1, 2, 4} (5) =P Rule T, (4), and 112

{6} 6 PVR Rule P

{1, 2, 4, 6} (MR Rule T, (5), (6) and 110
{1,2,4,6} (B8R A-R Rule T, (4), (7), and lg

Hence, our assumption is wrong.

Example: Show that the following set of premises are inconsistent, using proof by contradiction

P—->QVR),Q— P S— R P=>P— S
Solution: We include —(P — —S) as an additional premise. Then we show that this leads to a
contradiction.

" a(P—>—-S) e a(-PV aS)< PAS.

{1} 1) P—(QVR) Rule P

{2} (2) P Rule P

{1, 2} 3 QVR Rule T, (1), (2), and Modus Ponens
{4} (4) PAS Rule P (assumed)

{1, 2, 4} (5) S Rule T, (4),andP A Q =P
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{6} (6) S— —R Rule P

{1,2,4,6} (7) -R Rule T, (5), (6) and Modus Ponens
{1,2,4,6} (8) Q RuleT, (3),(7),andP A Q,-Q =P
{9} 9 9——P Rule P

{1,2,4,6} (10) =P Rule T, (8),(9),andP A Q,-Q =P
{1,2,4,6} (11) PA-P Rule T, (2), (10),and P,Q => P A Q
{1,2,4,6} (12) F Rule T, (11),and P A =P < F

Hence, it is proved that the given premises are inconsistent.
The Predicate Calculus

Predicate
A part of a declarative sentence describing the properties of an object is called a
predicate. The logic based upon the analysis of predicate in any statement is called
predicate logic.
Consider two statements:

John is a bachelor

Smith is a bachelor.
In each statement lis a bachelorl is a predicate. Both John and Smith have the same
property of being a bachelor. In the statement logic, we require two different symbols to
express them and these symbols do not reveal the common property of these statements.
In predicate calculus these statements can be replaced by a single statement Ix is a
bachelorl. A predicate is symbolized by a capital letters which is followed by the list of
variables. The list of variables is enclosed in parenthesis. If P stands for the predicate lis
abachelorl, then P (x) stands for Ix is a bachelorl,where X is a predicate variable.

“The domain for P (x) : x is a bachelor, can be taken as the set of all human
names. Note that P (x) is not a statement, but just an expression. Once a value is assigned
to x, P (x) becomes a statement and has the truth value. If x is Ram, then P (x) is a
statement and its truth value is true.

Quantifiers

Quantifiers: Quantifiers are words that are refer to quantities such as ‘some* or ‘all‘.

Universal Quantifier: The phrase ‘forall® (denoted by V) is called the universal quantifier.

For example, consider the sentence IAll human beings are mortall.
Let P (x) denote ‘X is a mortal.
Then, the above sentence can be written as

(Vx € S)P (x)or VxP (x)
where S denote the set of all human beings.

V x represents each of the following phrases, since they have essentially the same for all x

For every x
For each x.

Existential Quantifier: The phrase ‘there exists‘ (denoted by 3) is called the exis-tential
quantifier.
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For example, consider the sentence
IThere exists X such that X2 =5.
This sentence can be written as

(Ix € R)P (x) or (IX)P (x),
where P (X) : X% = 5.

dx represents each of the following phrases
There exists an x
There is an X
For some x
There is at least one x.

Example: Write the following statements in symbolic form:
(). Something is good
(ii). Everything is good
(iii). Nothing is good
(iv). Something is not good.
Solution: Statement (i) means IThere is atleast one X such that, x is goodl.
Statement (i1) means IForall x, X is goodl.
Statement (ii1) means, |Forall X, X is not goodl.
Statement (iv) means, IThere is atleast one x such that, x is not good.
Thus, if G(x) : x is good, then

statement (i) can be denoted by (3x)G(x)
statement (ii) can be denoted by (V' x)G(x)
statement (iii) can be denoted by (V' x)=G(x)

statement (iv) can be denoted by (dx)—~G(x).
Example: Let K(x) : x is a man
L(x) : x is mortal
M(x) : x is an integer
N(x) : x either positive or negative
Express the following using quantifiers:
e All men are mortal
e Any integer is either positive or negative.
Solution: (a) The given statement can be written as
for all x, if x is a man, then x is mortal and this can be expressed as
((K(x) — L(X)).
(b) The given statement can be written as
for all x, if x is an integer, then x is either positive or negative and this can be expressed
as (X)(M(x) — N(x)).
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Free and Bound Variables

Given a formula containing a part of the form (x)P (x) or (IX)P (x), such a part is called
an x-bound part of the formula. Any occurrence of x in an x-bound part of the formula is
called a bound occurrence of x, while any occurrence of x or of any variable that is not a
bound occurrence is called a free occurrence. The smallest formula immediately

following (Vx) or (3x) is called the scope of the quantifier.
Consider the following formulas:

e (IP(xY)

e (P () —QK)

o (P () — (FYVRK Y)

o (P X)) —R() V KREK) — QX))
o (NP X A QX))

o (P () A QX).

In (1), P (x, y) is the scope of the quantifier, and occurrence of x is bound occurrence,
while the occurrence of y is free occurrence.

In (2), the scope of the universal quantifier is P (x) — Q(x), and all concrescences of x are
bound.

In (3), the scope of (x) is P (x) — (dy)R(X, y), while the scope of (3y) is R(x, y). All
occurrences of both x and y are bound occurrences.

In (4), the scope of the first quantifier is P (x) — R(x) and the scope of the second is
R(X) — O(x). All occurrences of x are bound occurrences.

In (5), the scope (3x) is P (x) A Q(X).

In (6), the scope of (3x) is P (x) and the last of occurrence of x in Q(X) is free.

Negations of Quantified Statements
(D). =P (X) = (IX)=P (x)

(iD). =(INP (x) = (X)(=P (x)).
Example: Let P (x) denote the statement IX is a professional athletel and let Q(X) denote the
statement Ix plays soccerl. The domain is the set of all people.
(a). Write each of the following proposition in English.

e (P () — Q)
o (INPK)AQN)
o ((PXVQX)

(b). Write the negation of each of the above propositions, both in symbols and in words.
Solution:
(@). (1). Forall x, if x is an professional athlete then x plays soccer.
IAIl professional athletes plays soccerl or IEvery professional athlete plays
soccerl.
(). There exists an x such that x is a professional athlete and x plays soccer.
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ISome professional athletes paly soccerl.
(iii). For all x, x is a professional athlete or x plays soccer.
IEvery person is either professional athlete or plays soccerl.

(). (1). In symbol: We know that
—(X)(P (x) = Q(x)) = (IX)=(P (x) = Q(x)) = (Ix)=(=(P (x)) V Q(x))
< ()P (x) A =Q(x))

There exists an x such that, x is a professional athlete and x does not paly soccer.
In words: ISome professional athlete do not play soccerl.

(i). =(@)(P (x) A QX)) = (X)(=P (x) V =Q(x))
In words: |IEvery people is neither a professional athlete nor plays soccerl or All people
either not a professional athlete or do not play soccerl.

(if). 2 () (P (x) V Q(x)) = (IX)(=P (x) A =Q(X)).

In words: ISome people are not professional athlete or do not paly soccerl.

Inference Theory of the Predicate Calculus

To understand the inference theory of predicate calculus, it is important to be famil-iar
with the following rules:

Rule US: Universal specification or instaniation

(AX) = A(Y)
From (x)A(x), one can conclude A(y).
Rule ES: Existential specification

(FNAK) = A(Y)

From (dx)A(x), one can conclude A(y).
Rule EG: Existential generalization

A(X) = (FYAY)

From A(x), one can conclude (3y)A(y).
Rule UG: Universal generalization

A(X) = (V)A®Y)
From A(x), one can conclude (y)A(y).

Equivalence formulas:
E31: (AX)[AKX) V B(X)] & (AXAX) V (IX)B(X)
E32: ()[AX) A BX)] = (AKX) A (X)B(X)
E33: = (IX)A(X) < (X)-A(X)
E34:=(X)A(X) < (Ix)-A(X)
E35: (X)(A V B(X)) & AV (X)B(X)
E36: (AX)(A A B(X)) © A A (IX)B(x)
E37: (NAKX) — B < (X)(A(X) — B)
E3s: (AX)A(X) —» B < (X)(A(X) — B)
E39:4 — (X)B(X) & (X)(4 — B(X))
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E40:4 — (IX)B(X) © (IAX)(4 — B(X))
E41: (3X)(A(X) — B(x)) <= (X)AX) — (IX)B(X)
E42: (AX)A(X) — (X)B(X) < (X)(A(X) — B(X)).

Example: Verify the validity of the following arguments:
IAIl men are mortal. Socrates is a man. Therefore, Socrates is mortall.
or

Show that (X)[H(X) — M(X)] A H(s) = M(s).
Solution: Let us represent the statements as follows:

H(x) : x isa man

M(X) : x is a mortal

s : Socrates

Thus, we have to show that (X)[H(X) — M(X)] A H(s) = M(s).

{1} (1) HK) — M(X)] Rule P

{1} (2) H(s) — M(s) Rule US, (1)

{3} (3) H(s) Rule P

{1, 3} (4) M(s) Rule T, (2), (3), and I11

Example: Establish the validity of the following argument:IAll integers are ratio-nal numbers.
Some integers are powers of 2. Therefore, some rational numbers are powers of 2I.

Solution: Let P (x) : x is an integer
R(X) : x is rational number
S(x) : x is a power of 2

Hence, the given statements becomes

(P () =R (X)), (F)(P (x) A S(X)) = (FX)(R(X) A S(x))

Solution:

{1} 1) @XP (xX) A S(X) Rule P

{1} (2) P(y) A S(y) Rule ES, (1)

{1} (3) P(y) RuleT,(2)andP A Q=P

{1} 4) S(y) RuleT,(2)andP A Q = Q

{5} (5) ()P (x) = R(x)) Rule P

{5} (6) P (y) — R(Y) Rule US, (5)

{1, 5} (7) R(Y) Rule T, (3),(6)and P,P > Q= Q
{1, 5} (8) R(Y)AS(Y) RuleT,(4), (M) andP,Q=>P AQ
{1, 5} 9) (@NRE) A S(x)) Rule EG, (8)

Hence, the given statement is valid.
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Example: Show that (X)(P (X) — Q(x)) A (X)(Q(X) — R(X)) = (X)(P (x) — R(x)).
Solution:

{1} (1) (P (x) — O(x)) Rule P

{1} (2) P (y) — O®Y) Rule US, (1)

{3} (3) ()(Q(X) — R(X)) Rule P

{3} (4) Q(y) — R(y) Rule US, (3)

{1, 3} (5) P (y) — R(Y) Rule T, (2), (4), and 113
{1, 3} 6) (X)(P () — R(X)) Rule UG, (5)

Example: Show that (3x)M(x) follows logically from the premises
OQ(H(X) — M(x)) and (AX)H(x).

Solution:

{1} (1) (@HEX) Rule P

{1} (2) H(y) Rule ES, (1)

{3} (3) ()(HX) — M(x)) Rule P

{3} (4) H(y) — M(y) Rule US, (3)

{1, 3} (5) M(y) Rule T, (2), (4), and 111
{1, 3} (6) (INM(x) Rule EG, (5)

Hence, the result.

Example: Show that (Ix)[P (xX) A Q(X)] = (IX)P (x) A (IX)Q(X).
Solution:

{1} (1) (3P (x) A QX)) Rule P

{1} ()P (Y) A Q(Y) Rule ES, (1)

{1} (3) P (y) Rule T, (2), and I1
{1} (4) (3X)P (x) Rule EG, (3)

{1} (5) Q) Rule T, (2), and I2
{1} (6) (IXQ(X) Rule EG, (5)

{1} (7) (3P (x) A (IX)Q(X) Rule T, (4), (5) and Ig

Hence, the result.
Note: Is the converse true?

{1} (1) (AX)P () A (IX)Q(X) Rule P

{1} (2) (3X)P (%) Rule T, (1) and I1
{1} (3) (IXQ(X) Rule T, (1), and 11
{1} (4) P (y) Rule ES, (2)

{1} (5) Q(s) Rule ES, (3)
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Here in step (4), y is fixed, and it is not possible to use that variable again in step (5).
Hence, the converse is not true.

Example: Show that from (IX)[F (xX) AS(X)] — (V)[M(y) — W (y)] and (Fy)[M(y) A =W (y)] the
conclusion (x)[F (x) — —S(x)] follows.

{1} (1) @ANIM(Y) A =W (y)] Rule P
{1} 2) M@ A=W ()] Rule ES, (1)
{1} () —[M@) - W ()] RuleT, (2),and =(P - Q) & P A -Q
{1} @) @y)=[My) - W (y)] Rule EG, (3)
{1} (5) =(y)[M(y) =W ()] Rule T, (4), and =(X)A(X) < (Ix)=A(X)
{1} (6) (@[F (¥) A S(x)] — (IM(y) — W (y)IRuleP
{1,6} (7) ~@IF () A S(X)] Rule T, (5), (6) and 112
{1,6} (8) ()=[F()AS(X)] Rule T, (7), and =(X)A(X) < (Ix)=A(X)
{1,63 (9 ~[F@ AS@)] Rule US, (8)
{1,6} (10) “F (@) Vv =3(2) Rule T, (9), and De Morgan‘s laws
{1,6} (11) F @) — —S(2) Rule T, (10),andP - Q < =P v Q
{1,6} (12) (X)(F (x) — =S(x)) Rule UG, (11)
Hence, the result.

Example: Show that (X)(P (x) V Q(x)) = (X)P (x) V (IX)Q(X). (May. 2012)

Solution: We shall use the indirect method of proof by assuming —=((X)P (x) v (3dx)Q(X)) as an
additional premise.

{1} (1) =(()P (x) Vv (INQ(x)) Rule P (assumed)

{1} (2) =P () A ~(IX)Q(X) Rule T, (1) =(PV Q) & =P A =Q
{1} (3) =(X)P (x) Rule T, (2), and I1

{1} 4) (3x)=P (x) Rule T, (3), and =(X)A(X) < (IX)-A(X)
{1} (5) =(IX)Q(X) Rule T, (2), and I

{1} (6) (x)~Q(x) Rule T, (5), and =(IX)A(X) < (X)=A(X)
{1} (7)) =P (y) Rule ES, (5), (6) and 112

{1} (8) —Q(y) Rule US, (6)

{1} (9) =P (y) A =Q(y) Rule T, (7), (8)and Ig

{1} (10) ~(P(y) v Q) Rule T, (9),and =(P vV Q) & =P A =Q
{11} A1) P K vV QX)) Rule P

{113  (12) (P(y) Vv Q(y) Rule US

{1,113 (13) ~(P(y) v Q(Y)) A (P (y) VQ(y)) Rule T, (10), (11), and Ig

{1,11} (14) F Rule T, and (13)
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which is a contradiction.Hence, the statement is valid.

Example: Using predicate logic, prove the validity of the following argument: |IEvery
husband argues with his wife. x is a husband. Therefore, x argues with his wifel.

Solution: Let P (x): x is a husband.

Q(x): x argues with his wife.

Thus, we have to show that (X)[P (x) — O(X)] A P (X) = Q(y).

{1} @ P () — O0Kx) Rule P

{I  @PHy—0y Rule US, (1)

{1+ @GPy Rule P

{1} @ QWy Rule T, (2), (3), and I11

Example: Prove using rules of inference
Duke is a Labrador retriever.
All Labrador retriever like to swim.
Therefore Duke likes to swim.
Solution: We denote

L(x): x is a Labrador retriever.
S(x): x likes to swim.
d: Duke.

We need to show that L(d) A (X)(L(x) — S(x)) = S(d).

L O ®LK —SK) Rule P

L (@ L@ — S(d) Rule US, (1)

2} (3 L) Rule P

1,2} (4 s@) Rule T, (2), (3), and I11.
. .

I Test the Validity of the Following argument: -All dogs are barking. Some animals are
dogs. Therefore, some animals are barkingl.
! Test the Validity of the Following argument:
-Some cats are animals. Some dogs are animals. Therefore, some cats are dogsl.
3 Symbolizes and prove the validity of the following arguments :
() Himalaya is large. Therefore every thing is large.
(i) Not every thing is edible. Therefore nothing is edible.
i a) Find the PCNF of (~p«sr) A(qe>p) ?
b) Explain in brief about duality Law?

c¢) Construct the Truth table for ~(~p*~q)?
d) Find the disjunctive Normal form of ~(p — (gr)) ?

5 Define Well Formed Formula? Explain about Tautology with example?
6 Explain in detail about the Logical Connectives with Examples?
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1 Obtain the principal conjunctive normal form of the formula ( P—R)A(Q-P)
8 Prove that (Ix)P(X)AQ(x) — (IX)P(X)A(Ix)Q(x). Does the converse hold?
§  Show that from i) (IX)(F(X) A S(X)) = (Y)(M(y) »> W(y))
i) Ay) (M(y) A7 W(y)) the conclusion (x)(F(x) — 7 S(x)) follows.

I Obtain the principal disjunctive and conjunctive normal forms of (P -(QAR)) A(q P—(7 QA7 R)). Is

this formula a tautology?

1 Prove that the following argument is valid: No Mathematicians are fools. No one who is not a fool

is an administrator. Sitha is a mathematician. Therefore Sitha is not an administrator.

?  Test the Validity of the Following argument: If you work hard, you will pass the exam. You did not

pass. Therefore you did not work hard.

8 Without constructing the Truth Table prove that (p—q) —>q=pvq?

4 Using normal forms, show that the formula Qv(PAq Q)v( 4 PAq Q) is a tautology.

15. Show that (x) (P(X) v Q(X)) = (X)P(X) v (3X)Q(X)

16. Show that 1 (PAQ) — (7 Pv(7PvQ)) & (7PvQ)

(PvQ)A( PA(7PAQ)) & (7 PAQ)

17. Prove that (3x) (P(X) A Q(X)) =>(3X)P(X) A (IX)Q(X)

18. Example: Prove or disprove the validity of the following arguments using the rules of
inference. (i) All men are fallible (ii) All kings are men (iii) Therefore, all kings are
fallible.

19. Test the Validity of the Following argument:

-Lions are dangerous animals, there are lions, and therefore there are dangerous
animals.|

MULTIPLE CHOICE QUESTIONS

1: Which of the following propositions is tautology?
A(pvqg)—q B. p Vv (g—p) C.pv(p—q) D.Both(b)&(c)

Option: C
2: Which of the propositionis p* (~pVv Q) is
A.A tautology B.A contradiction C.Logically equivalent to p * q D.All of above
Option: C
3: Which of the following is/are tautology?
A.avb—-b”c B.a*b—-bvc C.avb—(b—c) D.None of these
Option: B
4: Logical expression (A*B) - (C'*A) > (A= 1)is
A.ContradictionB.Valid C.Well-formed formula D.None of these
Option: D

5: Identify the valid conclusion from the premises PvQ,Q —- R, P —-» M, IM
AP*(RVR) BP~A(P""R) CR"MNPVQ) DQ""(PVR)
Option: D
6: Let a, b, ¢, d be propositions. Assume that the equivalence a < (b v 1b) and b < ¢ hold. Then
truth value of the formula (a * b) — ((a * c) v d) is always
A.True B.False C.Same as the truth value ofa D.Same as the truth value of b

Option: A
7: Which of the following is a declarative statement?
A. It'sright B. He says C.Two may not be an even integer D.I love you
Option: B
8: P — (Q — R) is equivalent to
A .(P"Q)—R B.PvQ)—-R C(PvQ)— 1R D.None of these
Option: A

9: Which of the following are tautologies?
A((PvQ"Q«<Q B.((PvQ)"1P)—»Q C.(PvQ)"P)— P D.Both(a) & (b)
Option: D

10: If F1, F2 and F3 are propositional formulae such that F1 * F2 — F3 and F1 * F2—F3 are both
tautologies, then which of the following is TRUE?
A.Both F1 and F2 are tautologies B.The conjuction F1 * F2 is not satisfiable
C.Neither is tautologies D.None of these
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Option: B

11. Consider two well-formed formulas in propositional logic
F1:P —>1P F2: (P —1P) v ( TP —) Which of the following statement is correct?
A.F1 is satisfiable, F2 is unsatisfiable B.F1 is unsatisfiable, F2 is satisfiable

C.F1 is unsatisfiable, F2 is valid D.F1 & F2 are both satisfiable
Option: C

12: What can we correctly say about proposition P1: (pv 19) * (g —r) v (rv p)
A.P1 is tautology B.P1 is satisfiable

C.If pistrue and q is false and r is false, the P1 is true
D.If p as true and q is true and r is false, then P1 is true

Option: C

13: (Pv Q) * (P — R)"(Q —S)is equivalent to
ASAR BS—->R CSvR D.All of above
Option: C

14: The functionally complete set is
A{1,Nv} B.{l,"}C.{1} D.None of these
Option: C

15: (P v Q) * (P—R) * (Q — R) is equivalent to
AP B.Q CR D.True=T

Option: C
16: (P — Q) is equivalent to
A.PM1Q BPM"QC.IPVQ D.None of these
Option: A
17: In propositional logic , which of the following is equivalentto p — q?
A~p—q B~pvq C~pv~¢q D.p —q

Option: B
18: Which of the following is FALSE? Read " as And, v as OR, ~as NOT, —as one way implication
and < as two way implication?
A((x = y)*x) -y B.(~x =y)* (~x*~y))-y  C.(x— (xVvY))D.((xVvy) «(~xVv-~y))
Option: D
19: Which of the following well-formed formula(s) are valid?

C.(Pv(IPVvI1Q)) —P D.(P—R)v(Q—R))— (PvQ—R)
Option: A
20: Let p and q be propositions. Using only the truth table decide whether p < q does not imply p
—1gis
A.True B.False C.None D.Both A and B
Option: A
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UNIT-2
Set Theory

Set:A set is collection of well defined objects.

In the above definition the words set and collection for all practical purposes are Synonymous. We have really
used the word set to define itself.

Each of the objects in the set is called a member of an element of the set. The objects themselves can be almost
anything. Books, cities, numbers, animals, flowers, etc. Elements of a set are usually denoted by lower-case
letters. While sets are denoted by capital letters of English larguage.

The symbol € indicates the membership in a set.
If -a is an element of the set All, then we write a € A.
The symbol € is read —is a member of | or —is an element of .

The symbol ¢ is used to indicate that an object is not in the given set.

The symbol ¢ is read —is not a member of | or —is not an element of I..

If x is not an element of the set A then we write X ¢ A.

Subset:

A set A is a subset of the set B if and only if every element of A is also an element of B. We also say that A is
contained in B, and use the notation A < B.

Proper Subset:
A set A is called proper subset of the set B. If (i) A is subset of B and (ii) B is not a subset A i.e., A is said to be
a proper subset of B if every element of A belongs to the set B, but there is atleast one element of B, which is

not in A. If A is a proper subset of B, then we denote it by A — B.

Super set: If A is subset of B, then B is called a superset of A.

Null set: The set with no elements is called an empty set or null set. A Null set is designated by the symbol ¢ .
The null set is a subset of every set, i.e., If Aisany setthen ¢ cA.

Universal set:
In many discussions all the sets are considered to be subsets of one particular set. This set is called the
universal set for that discussion. The Universal set is often designated by the script letter £2. Universal set in

not unique and it may change from one discussion to another.

Power set:
The set of all subsets of a set A is called the power set of A.
The power set of A is denoted by P (A). If A has n elements in it, then P (A) has 2" elements:

Disjoint sets:
Two sets are said to be disjoint if they have no element in common.

Union of two sets:
The union of two sets A and B is the set whose elements are all of the elements in A or in B or in both. The
union of sets A and B denoted by A U B is read as -A union BIl.

Intersection of two sets:
The intersection of two sets A and B is the set whose elements are all of the elements common to both A and B.

The intersection of the sets of -All and -Bll is denoted by A () B and is read as -A intersection Bl
Difference of sets:

If A and B are subsets of the universal set U, then the relative complement of B in Ais the set of all elements in
A which are not in A. It is denoted by A — B thus: A—B ={x | x € Aand xg B}
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Complement of a set:
If U is a universal set containing the set A, then U — A is called the complement of A. It is denoted by A® . Thus

Al = {x: xgA}
Inclusion-Exclusion Principle:

The inclusion—exclusion principle is a counting technique which generalizes the familiar method of obtaining
the number of elements in the unionof two finite sets; symbolically expressed as

IAUB|=|A|+ [B| - |A N B.

AP B

Fig.Venn diagram showing the
union of sets A and B
where A and B are two finite sets and | S| indicates the cardinality of a set S (which may be considered as the
number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of
the two sets may be too large since some elements may be counted twice. The double-counted elements are
those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection.

The principle is more clearly seen in the case of three sets, which for the sets A, B and C is given by
|A UBU BC| = |A| + [B[+ |C|— |A N B~ |C N B|—|A N C[+|A NBNC|.

=

Fig.Inclusion—exclusion illustrated by a

Venn diagram for three sets

This formula can be verified by counting how many times each region in the Venn diagram figure is included
in the right-hand side of the formula. In this case, when removing the contributions of over-counted elements,
the number of elements in the mutual intersection of the three sets has been subtracted too often, so must be
added back in to get the correct total.

In general, Let AL, - - -, Ap be finite subsets of a set U. Then,
A UA U U = D - D Jay Nay|+
l=isp l=iy <ip=p
Z. |A|| ﬁAlg ﬁa"l|3|—--~+(—1}'ﬂ_l |A|mA2ﬁ'“ﬁA;ﬁ|r
l=iy iy =iz =p

Example: How many natural numbers n < 1000 are not divisible by any of 2, 3?
Ans:  Let A,={n €N |n<1000, 2|n} and As={n € N |n <1000, 3|n}.
Then, |A2 U A3| = |A2| + |A3| - |A2 N A3| =500+ 333 — 166 = 667.
So, the required answer is 1000 — 667 = 333.
Example: How many integers between 1 and 10000 are divisible by none of 2, 3, 5, 7?
Ans:  Forie{2 3,5 7} let Ai={n eN|n<10000, ijn}.
Therefore, the required answer is 10000 — |A2 U Az U As U A7| = 2285.
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Relations
Definition: Any set of ordered pairs defines a binary relation.
We shall call a binary relation simply a relation. Binary relations represent

relationships between elements of two sets. If R is a relation, a particular ordered pair, say (X,

y) € R can be written as xRy and can be read as -x is in relation R to yl.

Example: Give an example of a relation.
Solution: The relation -greater thanl for real numbers is denoted by >. If x and y are any

two real numbers such that x >y, then we say that (x, y) €>. Thus the relation > is { } >= (x,

y) : xand y are real numbers and x >y
Example: Define a relation between two sets A = {5, 6, 7} and B = {X, y}.

Solution: If A ={5, 6, 7} and B = {X, y}, then the subset R = {(5, x), (5, ¥), (6, x), (6, y)} is a
relation from A to B.

Definition: Let S be any relation. The domain of the relation S is defined as the set of all first
elements of the ordered pairs that belong to S and is denoted by D(S).

D(S)={x:(x,y) €S, forsomey }
The range of the relation S is defined as the set of all second elements of the ordered pairs that
belong to S and is denoted by R(S).

R(S)={y: (x,y) € S, for some x}
Example: A={2, 3,4} and B ={3, 4, 5, 6, 7}. Define a relation from Ato B by (a, b) € Rifa
divides b.
Solution: We obtain R ={(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}.
Domain of R = {2, 3, 4} and range of R = {3, 4, 6}.
Properties of Binary Relations in a Set

A relation R on a set X is said to be

Reflexive relation if xRx or (x, X) € R, Vx € X

Symmetric relation if xRy then yRx, Vx,y €X

Transitive relation if xRy and yRz then xRz, Vx,y,z € X

Irreflexive relation if xRx or (x, X) ¢ R, Vx € X
Antisymmetric relation if for every x and y in X, whenever xRy and yRx, then x =y.

Examples: (i). If R1={(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)} be a relation on A = {1, 2, 3}, then Ry is

a reflexive relation, since for every x € A, (x, X) € R1.

(). IfR2={(1, 1), (1, 2), (2, 3), (3, 3)} be arelation on A ={1, 2, 3}, then R2 is not a reflexive

relation, since for every 2 € A, (2, 2) ¢ R2.

(). IfFR3={(1, 1), (1, 2), (1, 3), (2, 2), (2, 1), (3, 1)} be arelationon A = {1, 2, 3}, thenR3is a
symmetric relation.
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(iv). IfR4={(1, 2), (2, 2), (2, 3)} on A= {1, 2, 3} is an antisymmetric.

Example: Given S ={1, 2, ..., 10} and a relation R on S, where R = {(x, y)| x +y = 10}.
What are the properties of the relation R?

Solution: Given that
S={1,2,..,10}

o ={(x, y)| x +y=10}
*={(1,9),(91),(28),(8 2),(3,7),(7,3), (4 6), (6 4), (55}

(). Forany x € Sand (x, x) ¢R. Here, 1 € Shut (1, 1)¢R.
> the relation R is not reflexive. It is also not irreflexive, since (5, 5) € R.
(i). (1,9 €R=>91€ER
(2,8)€R=>(8,2)€R...
> the relation is symmetric, but it is not antisymmetric. (iii). (1, 9) € Rand (9, 1) €R
= (1,1) ¢«R
= The relation R is not transitive. Hence, R is symmetric.

Relation Matrix and the Graph of a Relation

Relation Matrix: A relation R from a finite set X to a finite set Y can be repre-sented by a matrix
is called the relation matrix of R.

Let X ={x1, X2, ..., xm} and Y = {y1, y2, ..., yn} be finite sets containing m and n elements,
respectively, and R be the relation from A to B. Then R can be represented by an m x n matrix

MR = [rij ], which is defined as follows: ¢ if(x,y) eR
P

=
] 0. if(x.y)eR

Example. Let A ={1, 2, 3, 4} and B = {b1, b2, b3}. Consider the relation R = {(1, b2), (1, b3), (3,
b2), (4, b1), (4, b3)}. Determine the matrix of the relation.
Solution: A ={1, 2, 3, 4}, B ={b1, b, b3}.

Relation R = {(1, b2), (1, b3), (3, b2), (4, b1), (4, b3)}.
Matrix of the relation R is written as
011

. 0 0O
That is Mg =

|
0,0
L101
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Example: Let A ={1, 2, 3, 4}. Find the relati?n RonA det\ermined by the matrix
1010

|00 1O
Mp =
R‘1000

\1 10 1)
Solution: The relation R ={(1, 1), (1, 3), (2, 3), (3, 1), (4, 1), (4, 2), (4, 4)}.

Properties of a relation in a set:

(). If a relation is reflexive, then all the diagonal entries must be 1.

(ii). If a relation is symmetric, then the relation matrix is symmetric, i.e., rij = rj for every i and j.
(iii). If a relation is antisymmetric, then its matrix is such that if rjj = 1 then rjj = 0 for i =/j.

Graph of a Relation: A relation can also be represented pictorially by drawing its graph. Let R
be a relation in a set X = {x1, X2, ..., Xm}. The elements of X are represented by points or circles

called nodes. These nodes are called vertices. If (xj, Xj) € R, then we connect the nodes Xj and x;

by means of an arc and put an arrow on the arc in the direction from xj to xj . This is called an

edge. If all the nodes corresponding to the ordered pairs in R are connected by arcs with proper
arrows, then we get a graph of the relation R.

Note: (i). If xjRxj and xj Rxi, then we draw two arcs between xj and xj with arrows pointing in
both directions.

(ii). If xjRxi, then we get an arc which starts from node xj and returns to node x;. This arc is called
a loop.

Properties of relations:

(). Ifarelation is reflexive, then there must be a loop at each node. On the other hand, if the
relation is irreflexive, then there is no loop at any node.

(i1). If a relation is symmetric and if one node is connected to another, then there must be a return
arc from the second node to the first.

(iii). For antisymmetric relations, no such direct return path should exist.

(iv). If a relation is transitive, the situation is not so simple.

Example: Let X ={1, 2, 3, 4} and R={(x, y)| x > y}. Draw the graph of R and also give its matrix.
Solution: R ={(4, 1), (4, 3), (4, 2), (3, 1), (3, 2), (2, 1)}.
The graph of R and the matrix of R are

3 4

Graph of R
( 0 0O
|1 0
|
|
\

MR

0
100
1100}
111
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Partition and Covering of a Set
Let S be a givenset and A = {A1, A2, - - -, Am} where each Aj, i =1, 2,- - -, mis a subset of S and

UAi :S.
i=1

Then the set A is called a covering of S, and the sets A1, A, - - -, Am are said to cover S. If, in
addition, the elements of A, which are subsets of S, are mutually disjoint, then A is called a

partition of S, and the sets A1, A2, - - -, Am are called the blocks of the partition.

Example: Let S = {a, b, c} and consider the following collections of subsets of S. A ={{a, b}, {b,

c}}, B={{a} {a c}}, C={{a}, {b, c}}, D ={{a, b, c}}, E = {{a}, {b}, {c}}, and F = {{a}, {a, b}, {a,

c}}. Which of the above sets are covering?

Solution: The sets A, C, D, E, F are covering of S. But, the set B is not covering of S, since their
union is not S.

Example: Let S = {a, b, c} and consider the following collections of subsets of S. A ={{a, b}, {b,
c}l B={{a} {b, c}}, C={{a b, c}}, D ={{a}, {b}, {c}}, and E= {{a}, {a, c}}.

Which of the above sets are covering?

Solution: The sets B, C and D are partitions of S and also they are covering. Hence, every partition
IS a covering.

The set A is a covering, but it is not a partition of a set, since the sets {a, b} and {b, c} are not
disjoint. Hence, every covering need not be a partition.

The set E is not partition, since the union of the subsets is not S. The partition C has one block and
the partition D has three blocks.

Example: List of all ordered partitions S = {a, b, c, d} of type (1, 2, 2).

Solution:
({a}, {b}, {c, d}), ({b}, {a}, {c. d})
({a}, {c}, {b, d}), ({c}, {a}, {b, d})
({a}, {d}, {b, c}), ({d}, {a}, {b, c})
({b}, {c}, {a, d}), ({c}, {b}, {a, d})
({b}, {d}, {a, c}), ({d}, {b}, {a, c})
({c}, {d}, {a, b}), ({d}, {c}, {a, b}).

Equivalence Relations
A relation R in a set X is called an equivalence relation if it is reflexive, symmetric and transitive.
The following are some examples of equivalence relations:

1. Equality of numbers on a set of real numbers.

2. Equality of subsets of a universal set.

Example: Let X ={1, 2, 3, 4}and R == {(1, 1), (1, 4), (4, 1), (4, 4), (2, 2), (2, 3), (3, 2), (3, 3)}.
Prove that R is an equivalence relation.
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The corresponding graph of R is shown in figure:

Clearly, the relation R is reflexive, symmetric and transitive. Hence, R is an equivalence relation.
Example: Let X ={1, 2, 3, ..., 7} and R =(x, y)| x — y is divisible by 3. Show that R is an
equivalence relation.

Solution: (). Forany x €X, x —x =0 s divisible by 3.

". XRX
= R is reflexive.
il Foranyx,y € X, if xRy, then x — y is divisible by 3.
> —(x — y) is divisible by 3.
= y — x is divisible by 3.
= YRX
Thus, the relation R is symmetric.
(iii). For any x, y, z € X, let xRy and yRz.
> (x —y) + (v — 2) is divisible by 3
= x — z is divisible by 3

> XRz

Hence, the relation R is transitive.
Thus, the relation R is an equivalence relation.
Congruence Relation: Let | denote the set of all positive integers, and let m be apositive integer.

Forx € landy € I, define R as R = {(x, y)| x — y is divisible by m }

The statement Ix — y is divisible by ml is equivalent to the statement that both x and y have the
same remainder when each is divided by m.

In this case, denote R by = and to write xRy as x =y (mod m), which is read as Ix equals to y
modulo ml. The relation = is called a congruence relation.

Example: 83 = 13(mod 5), since 83-13=70 is divisible by 5.

Example: Prove that the relation -congruence modulo mll over the set of positive integers is an
equivalence relation.

Solution: Let N be the set of all positive integers and m be a positive integer. We define the
relation Icongruence modulo ml on N asfollows:

Let x,y € N. x =y (mod m) if and only if x — y is divisible by m.
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Letx,y,z € N. Then

(1. x —x=0m

> x =x (mod m) forallx € N

(if). Let x =y (mod m). Then, x — y is divisible by m.
> —(x —y) =y — xis divisible by m.

I.e., y = x (mod m)

.. The relation = is symmetric.

> x —yand y — z are divisible by m. Now (x — y) + (v — z) is divisible by m. i.e., x — z is
divisible by m.

= x =z (mod m)

.. The relation = is transitive.
Since the relation = is reflexive, symmetric and transitive, the relation congruence modulo m is an
equivalence relation.

Example: Let R denote a relation on the set of ordered pairs of positive integers such that (x,y)R(u,
v) iff xv = yu. Show that R is an equivalence relation.

Solution: Let R denote a relation on the set of ordered pairs of positive integers.
Let x, y, u and v be positive integers. Given (X, y)R(u, v) if and only if xv = yu.
(). Since xy = yx is true for all positive integers

= (X, Y)R(X, y), for all ordered pairs (x, y) of positive integers.
.. The relation R is reflexive. (ii). Let (x, y)R(u, V)

> XV=yu = yu

=XV = Uy = VX

= (U, V)R(x,Y)

.. The relation R is symmetric.
(iii). Letx, y, u, v, m and n be positive integers
Let (x, y)R(u, v) and (u, V)R(m, n)

= Xv =yu and un =vm

= Xvun = yuvm

= Xxn =ym, by canceling uv
= (X, Y)R(m, n)

.. The relation R is transitive.
Since R is reflexive, symmetric and transitive, hence the relation R is an
equivalence relation.
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Compatibility Relations

Definition: A relation R in X is said to be a compatibility relation if it is reflexive and symmetric.
Clearly, all equivalence relations are compatibility relations. A compatibility relation is sometimes
denoted by ~.

Example: Let X ={ball, bed, dog, let, egg}, and let the relation R be given by

R={(x,y)| x,y € X A xRy if x and y contain some common letter}.

Then R is a compatibility relation, and x, y are called compatible if xRy.

Note: ball~bed, bed~egg. But ball~egg. Thus ~ is not transitive.

Denoting Iballl by x1, Ibedl by X2, Idogl by x3, lletl by x4, and leggl by xs, the graph of = is

given as follows:
X3

Maximal Compatibility Block:

Let X be a set and ~ a compatibility relation on X. A subset A < X is called a maximal
compatibility block if any element of A is compatible to every other element of A and no element
of X — A4 is compatible to all the elements of A.

Example: The subsets {x1, x2, X4}, {X2, X3, x5}, {X2, X4, x5}, {X1, X4, X5} are maximal compatibility
blocks.

x
2
X

X3
X5

Xy

Example: Let the compatibility relation on a set {x1, X2, ..., X6} be given by the matrix:

x2 1

xsl 1

xa0 0 1

xs0 0 1 1

xel 0 1 0 1

X1 x2 X3 X4 X5
Draw the graph and find the maximal compatibility blocks of the relation.
Solution: x
Xg X2

%3

X
The maximal compatibility blocks are {x1, x2, X3},{X41, X3, X6},{X3, X5, X6},{X3, X4, X5}.
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Composition of Binary Relations
Let R be a relation from X to Y and S be a relation from Y to Z. Then a relation writtenas R o S

is called a composite relation of R and S where R-S = {(x, z)| x € X, z € Z, and there exists y €
Y with (x,y) € Rand (y, z) €S }.

Theorem: If R is relation from A to B, S is a relation from B to C and T is a relation from C to D
then 7o (S° R) =(T>S)° R

Example: Let R = {(L, 2), (3, 4), (2, 2)} and S = {(4, 2), (2, 5), (3, 1), (1, 3)}. Find R
S, SoR, Re(SR),(R°S) >R, R°R, S5, and (R°R) ° R.
Solution: Given R = {(1, 2), (3, 4), (2, 2)} and S = {(4, 2), (2, 5), (3, 1), (1, 3)}.

R>S={(1 5), (3, 2), (2 5)}

S R={(4,2), (3, 2), (L 4}=ReS

(R=8)°R={(3 2)}

Re(S°R)={(3,2}=(R°S)°R

R-R={(1,2), (2 2)}

ReR>S={(45), 3, 3), (L 1)}

Example: Let A = {a, b, c}, and R and S be relations on A whose matrices are as

given below:
(1 0 1\ (1 0 o\

Mr=|0 1 OjandMs=|1 0 1
1 11 011

Find the composite relations R > S, S° R, R ° R, S § and their matrices.
Solution:

R={(a a), (a ) (b a), (b, b), (b c), (c,b)}

S={(a, a), (b, b), (b, ), (c, a), (c, ¢)}. From these, we find that
R->S5={(a, a), (a,c),b,a), (b, b), (b c),(cbh),(cc)}

SR ={(a a), (a c), (b, b), (b a), (b, ), (c a), (c.b), (c. c)}

Re°R= R2 ={(a, a), (a, ¢), (a, b), (b, a), (b, ¢), (b, b), (c, a), (c, b),
(c,c)}S-S= 82 ={(a, a), (b, b), (b, ¢), (b, @), (c, @), (c, ¢)}.

The matrices of the above composite relations are as given

below:
(101\ (101 (111)
MRos= |0 1 1]|;Msor= 11l iMror=[11 1];
111 111 L111J
(1 0 O\
Msos=|1 O 1|
i)
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Transitive Closure

Let X be any finite set and R be a relation in X. The relation R" = RUR*UR*U- - -UR"

in X is called the transitive closure of R in X.
Example: Let the relation R = {(1, 2), (2, 3), (3, 3)} on the set {1, 2, 3}. What is the transitive closure of
R?
Solution: Given that R = {(1, 2), (2, 3), (3, 3)}.
The transitive closure of RisR* =R U RRURPU...=
R={(1,2), (2 3), (3, 3)}
R>R={(1,2),(23),(33);°{(12),(23), (3 3)}={173),
), 53, 3)}
R =R >R ={(1, 3), (2, 3), (3, 3)}
RY*=R3-R={(1 3), 2, 3), 3, 3)}
R*=RUR*UR’UR'U ..
={(1,2),(2,3),(3,3)} U {(1,3),(23),(3,3)} U {(1,3). (2,3), (3, 3)} U ...
={(1,2),(1,3), (2,3), (3, 3)}-
Therefore R" = {(1, 2), (L, 3), (2, 3), (3, 3)}.
Example: Let X ={1, 2, 3, 4} and R = {(1, 2), (2, 3), (3, 4)} be a relation on X. Find R".
Solution: Given R = {(1, 2), (2, 3), (3, 4)}

2

2

R
@
4

I w Il

R®={(1,3), (2, 4)}
R>={(1, 4)}
R ={(1, 4)}

R ={(1,2),(2,3),3,4),(13),(24), (1,4}

Partial Ordering
A binary relation R in a set P is called a partial order relation or a partial ordering in P iff R is
reflexive, antisymmetric, and transitive. i.e.,

e aRaforallaeP
e aRbandbRa=a=b

e aRbandbRc = aRc
A set P together with a partial ordering R is called a partial ordered set or poset. The relation R is
often denoted by the symbol <which is diff erent from the usual less than equal to symbol. Thus, if
<is a partial order in P , then the ordered pair (P, <) is called a poset.

Example: Show that the relation Igreater than or equal tol is a partial ordering on the set of
integers.

Solution: Let Z be the set of all integers and the relation R :,2,

(i). Since a > a for every integer a, the relation ,2, is reflexive.
(ii). Let a and b be any two integers.

LetaRbandbRa = a>band b >a
=>a=b

.. The relation > is antisymmetric. (iii).
Let a, b and ¢ be any three integers.
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LetaRband bRc = a>band b >c¢
> a>c
.. The relation ’2’ is transitive.

Since the relation > is reflexive, antisymmetric and transitive, > is partial ordering on the set of
integers. Therefore, (Z, >) is a poset.

Example: Show that the inclusion < is a partial ordering on the set power set of a set S.
Solution: Since (i). A < Aforall A < S, C is reflexive.
(). A< BandB < A = A=B, Cisantisymmetric.
(i), AcBandB < C = A C C, Cistransitive.
Thus, the relation < is a partial ordering on the power set of S.
Example: Show that the divisibility relation I'isa partial ordering on the set of positive integers.
Solution: Let Z* be the set of positive integers.
Since (i). a/aforalla € Z°, / i reflexive.

(ii). a/b and b/a = a = b, / is antisymmetric.

(iii). a/b and b/c = alc, / is transitive.
It follows that / is a partial ordering on Z" and (Z+, /) is a poset.

Note: On the set of all integers, the above relation is not a partial order as a and —a both divide
each other, but a = —a. i.e., the relation is not antisymmetric. Definition: Let (P, <) be a partially

ordered set. If for every x, y € P we have either x <y Vv y <x, then < is called a simple ordering or
linear ordering on P, and (P, <) is called a totally ordered or simply ordered set or a chain.
Note: It is not necessary to have x <y or y <x for every x and y in a poset P . In fact, x may not be
related to y, in which case we say that x and y are incomparable. Examples:

(). The poset (Z, <) is a totally ordered.

Since a <b or b <a whenever a and b are integers.

(i1). The divisibility relation / is a partial ordering on the set of positive integers.
Therefore (Z+, /) is a poset and it is not a totally ordered, since it contain elements that are
incomparable, suchas 5 and 7, 3 and 5.

Definition: Ina poset (P, <), an elementy € P is said to cover an element x € P if x <y and if
there does not exist any element z € P such that x <zand z <y; that is, y covers x < (x <y A (X <z
<y=>X=zVzZ=Y)).

Hasse Diagrams

A partial order <on a set P can be represented by means of a diagram known as Hasse diagram of

(P, ). In such a diagram,
(). Each element is represented by a small circle or dot.

(it). The circle for x € P is drawn below the circle fory € P if x <y, and a line is drawn
between x and y if y covers x.
(ii1). If x <y but y does not cover x, then x and y are not connected directly by a single line.
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Note: For totally ordered set (P, <), the Hasse diagram consists of circles one below the other. The
poset is called a chain.

Example: Let P = {1, 2, 3, 4, 5} and < be the relation lless than or equal tol then the Hasse
diagram is:

It is a totally ordered set.

Example: Let X = {2, 3, 6, 12, 24, 36}, and the relation <be such that x <y if x divides y. Draw the
Hasse diagram of (X, <). Solution: The Hasse diagram is is shown below:

36 24

It is not a total order set.

Example: Draw the Hasse diagram for the relation R on A = {1, 2, 3, 4, 5} whose relation matrix
given below:

<

e

I
O O OO -
o O ok, O
O O Pk
O R BPERE
[ o T R S

Solution:
R={(1, 1), (1, 3), (1, 4), (1,5), (2, 2), (2,3), (2,4), (2,5), (3, 3), (3, 4), (3,5), (4, 4), (5.5}

Hasse diagram for MR is

4N /;
//
S
3
/
o
¢ Yo
! 2
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Example: A partial order R on the set A = {1, 2, 3, 4} is represented by the following digraph.

Draw the Hasse diagram for R.
(.é\
1

Solution: By examining the given digraph , we find that
R={(1,1), (1,2),(1,3), (1,4),(2 2),(2,4), (3,3), (4 4}
We check that R is reflexive, transitive and antisymmetric. Therefore, R is partial order relation
onA.
The hasse diagram of R is shown below:

1

Example: Let A be a finite set and p(A) be its power set. Let < be the inclusion relation on the

elements of p(A). Draw the Hasse diagram of p(A), <) for

« A={a}
e A={a Db}
Solution: (i). Let A ={a}
p(A) = {4, a}
Hasse diagram of (p(A), <) is shown in Fig: A={a}
¢
(ii). Let A={a, b}. p(A) = {¢, {a}, {b}, {a, b}}.
The Hasse diagram for (p(A), <) is shown in fig:
{a, b} {a, b}
{a} {b} {b} {a}
¢ ¢

Example: Draw the Hasse diagram for the partial ordering < on the power set P (S) where S = {a,
b, c}.
Solution: S={a, b, c}.
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P (S)=1{4. {a}, {b}, {c}. {a, b}, {a, c}, {b ¢}, {a b, c}}.

Hasse diagram for the partial ordered set is shown in fig:
A={a b, c}
////\\\\

(a, b} [i fa, 1, \/“ ,

i B e
,//\\w//\\\] o
{a} {b} 21e
\\_ '//
e 2
NG
o}

-

Example: Draw the Hasse diagram representing the positive divisions of 36 (i.e., D3g).

Solution: We have D3g ={1, 2, 3, 4, 6, 9, 12, 18, 36} if and only a divides b. The Hasse diagram
for R is shown in Fig.

Minimal and Maximal elements(members): Let (P, <) denote a partially or-dered set. An
elementy € P is called a minimal member of P relative to <iffornox € P, isx <y.
Similarly an element y € P is called a maximal member of P relative to the partial ordering < if

fornox e P,isy <x

Note:
(1). The minimal and maximal members of a partially ordered set need not unique.
(). Maximal and minimal elements are easily calculated from the Hasse diagram.
They are the 'top’ and "bottom’ elements in the diagram.

Example:

In the Hasse diagram, there are two maximal elements and two minimal elements.
The elements 3, 5 are maximal and the elements 1 and 6 are minimal.
Example: Let A={a, b, c, d, e} and let the partial
order on A in the natural way. c
The element a is maximal.

The elements d and e are minimal. by 6

a

Upper and Lower Bounds: Let (P, <) be a partially ordered set and let A < P . Any element x € P

is called an upper bound for A if for all a € A, a < x. Similarly, any element x € P is called a
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lower bound for A if for all a € A, x <a. Example: A ={1, 2, 3, ..., 6} be ordered as pictured in
figure.

6

If B = {4, 5} then the upper bounds of B are 1, 2, 3. The lower bound of B is 6.
Least Upper Bound and Greatest Lower Bound:

Let (P, <) be a partial ordered set and let A = P . An element x € P is a least upper bound or
supremum for A if x is an upper bound for A and x < y where y is any upper bound for A.

Similarly, the the greatest lower bound or in mum for A is an element x € P such that x is a lower
bound and y <x for all lower bounds y.

Example: Find the great lower bound and the least upper bound of {b, d, g}, if they exist in the
poset shown in fig:

Solution: The upper bounds of {b, d, g} are g and h. Since g < h, g is the least upper bound. The
lower bounds of {b, d, g} are a and b. Since a < b, b is the greatest lower bound.

Example: Let A = {a, b, c, d, e, f, g, h} denote a partially ordered set whose Hasse diagram is
shown in Fig:

g h
If B ={c, d, e} then f, g, h are upper bounds of B. « e
The element f is least upper bound. L

a b

Example: Consider the poset A ={1, 2, 3, 4, 5, 6, 7, 8} whose Hasse diagram is shown in Fig and
let B = {3, 4, 5} 8

The elements 1, 2, 3 are lower bounds of B. 3
3 is greatest lower bound.
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Functions

A function is a special case of relation.
Definition: Let X and Y be any two sets. A relation f from X to Y is called a function if for every x

€ X, there is a unique element y € Y such that (x, y) € f. Note: The definition of function requires
that a relation must satisfies two additional conditions in order to qualify as a function. These
conditions are as follows:

(i) For every x € X must be related to somey € Y, i.e., the domain of f must be X and nor merely
a subset of X.

i Uniqueness, i.e., (x,y) efand (x,z) ef=>y=1z.

The notation f : X — Y, means f is a function from X toY .

Example: Let X={1,2,3}, Y={p, q, r}and f = {(1, p), (2, Q), (3, r)} then f(1) = p, f(2) = q, f(3)
=r. Clearly f is a function from Xto Y .

z Y
Domain and Range of a Function: If f : X — Y'is a function, then X is called the Domain of f and
the set Y is called the codomain of f. The range of f is defined as the set of all images under f.
It is denoted by f(X) = {y| for some x in X, f(x) =y} and is called the image of X in Y . The Range

f is also denoted by Rs.

Example: If the function f is defined by 1‘(x):x2 +1onthe set {~2, —1, 0, 1, 2}, find the range of
f

Solution: f(=2) = (=2)*+ 1 =5

f(-1) = (-1)°+1=2

fO)=0+1=1
fly=1+1=2
fQ)=4+1=5

Therefore, the range of f = {1, 2, 5}.

Types of Functions

One-to-one(Injection): A mapping f : X — Yis called one-to-one if distinct elements of X are
mapped into distinct elements of Y , i.e., f is one-to-one if
x1=/x2 = f(x1) 7f(x2)
or equivalently f(x1) = f(x2) = x1 = x2 for x1, x2 € X.
S

6‘. ia

X Y

60



Example: f : R — R defined by f(x) = 3x, Vx €R is one-one, since
f(x1) =f(x2) = 3x1=3x2 = x1=x2, VX1, X2 € R.
Example: Determine whether f: Z — Z given by f(x) = x2, X € Z is a one-to-One function.

Solution: The function f: Z — Z given by f(x) = x2, X € Z is not a one-to-one function. This is
because both 3 and -3 have 9 as their image, which is against the definition of a one-to-one

function.

Onto(Surjection): A mapping f : X — Y'is called onto if the range set Rf=Y .

If f : X — Yis onto, then each element of Y is f-image of atleast one element of X.

e, {f(x) :xe X} =Y.
If f is not onto, then it is said to be into.

J 1 f -

;) 2
3 g
9 r

5 4
Y

¥ ¥ £

Surjective Not Surjective

Example: f: R — R, given by f(x) = 2x, VX €R is onto.

Bijection or One-to-One, Onto: A mapping f : X — Y is called one-to-one, onto or bijective if it is
both one-to-one and onto. Such a mapping is also called a one-to-one correspondence between X

and Y .

<]

>4 Y

Example: Show that a mapping f : R — R defined by f(x) = 2x + 1 for x € R is a bijective map
fromR to R.

Solution: Let f : R — R defined by f(x) = 2x + 1 for x € R. We need to prove that f is a bijective
map, i.e., it is enough to prove that f is one-one and onto.

e Proof of f being one-to-one
Let x and y be any two elements in R such that f(x) = f(y)

> 2x+1=2y+1
> X=Yy

Thus, f(x) =f(y) = x=y
This implies that f is one-to-one.
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e Proof of f being onto
Let y be any element in the codomain R

= )=y
=> 2Xx+1=y
= x = (y-1)/2

Clearly, x = (y-1)/2€ R
Thus, every element in the codomain has pre-image in the domain.
This implies that f is onto
Hence, f is a bijective map.
Identity function: Let X be any set and f be a function such that f : X — X is defined by f(x) = x

for all x € X. Then, f is called the identity function or identity transformation on X. It can be
denoted by I or Ix.
Note: The identity function is both one-to-one and onto.

Let Ix(x) = Ix(y)

>X=Y

> Ix IS one-to-one

Ix is onto since x = Ix(x) for all x.
Composition of Functions

Letf: X — Yandg: Y — Zbe two functions. Then the composition of f and g denoted by g ° f,
is the function from X to Z defined as

(g N = g(f(x)), for all x € X.
Note. In the above definition it is assumed that the range of the function f is a subset of Y (the

Domain of g), i.e., Rf & Dg. g ° f'is called the left composition g with f.
Example: Let X={1, 2, 3}, Y={p, g} and Z = {a, b}. Also let f : X — Y be f={(1, p), (2, q), (3,
g)}and g: Y — Zbe given by g ={(p, b), (q, b)}. Find g - /. Solution: g - f={(1, b), (2, b), (3, b).

Example: Let X ={1, 2, 3} and f, g, h and s be the functions from X to X given

by
f={(12),(23), (3 1)} 9={(12),(21), 3 3)}
_ h={(1,1), (2 2), (3 1)} s={(1,1), (2, 2), (3, 3)}
Findfefigeofifohog sog,ges;ses;andfes.

Solution:
fog={(123), (22,3 1)}
g°/={(1,1),(273), 3 2}~fg
foheg=fo(hog)=f°{(12),(21), @ 1)}
={(1,3),(2,2), 3 2)}
s°g={(1,2),(2,1), 3 3)}=9
g°s={(12),(21), 3 3)}
_'_Sog:goszg
ses=9(1,1),(22),(3,3)}=s
fes={1,2),(273),3, 1)}
Thus,ses=s,feg#gef,scg=ges=gandhes=sch=h.
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Example: Let f(x) = x + 2, g(x) = x — 2 and h(x) = 3x for x € R, where R is the set of real
numbers. Find g fi fe g, fofigeg foh,heg hefiandfo hoqg.
Solution: f : R — R is defined by f(x) = x + 2
f: R — R is defined by g(x) = x — 2
h: R — R is defined by h(x) = 3x
e g°of:R—R
Let x € R. Thus, we can write
(€N =9(f(x) =g(x+2) =x+2—-2=x
S (g N ={(x, )| x € R}
(o)) =f(9(x) =fx —2) = (x —2) + 2 =x
S feg={(x,X)| x € R}
(o NX) =ff(X)) =f(x+2)=x+2+2=x+4
S fef={(x,x+4)|x € R}
(2°2)() =9(E() =gx ~2) =x~2-2=x 4
= gog={(x, x—4)|xe€R}
(fo h)(X) =f(h(x)) =f(3x) =3x +2
S feh={(x,3x+2)| x € R}
(h°g)(x) =h(g(x)) =h(x —2)=3(x —2) =3x -6
Soheg={(x,3x — 6)| x € R}
(AoB)X) =h(f(X)) =h(x+2)=3(x+2)=3x+6hef=
{(x, 3x + 6)| x € R}
(foheog)x)=[f°(he9)x)
f(hog(X))=f(3x —6)=3x—6+2=3x—4

S feheg={(x, 3x — 4)| X €R}.

Example: What is composition of functions? Let f and g be functions from R to R, where R is a

set of real numbers defined by f(x) = x2 + 3x + 1 and g(x) = 2x — 3. Find the composition of
functions: i) fo fii) fo giii) g f.
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Inverse Functions
A function f : X — Y'is aid to be invertible of its inverse function f_1 is also function from the
range of f into X.
Theorem: A function f : X — Y'is invertible < f is one-to-one and onto.
Example: Let X={a, b, c,d}and Y ={(1, 2, 3, 4}and letf: X — Y be given by f = {(a, 1), (b, 2),
(c, 2), (d, 3)}. Isf T afunction?
Solution: Fiz {(1, a), (2, b), (2, ¢), (3, d)}. Here, 2 has two distinct images b and c.
Therefore, 1 is not a function.

Example: Let R be the set of real numbers and f: R — R be given by f = {(x, x¥*)| x €R}. Isf 1 a
function?

Solution: The inverse of the given function is defined as f~* = {(x?, x)| x € R}.
Therefore, it is not a function.

Theorem: Iff : X — Yand g : Y — X be such that g - /= Ixand /> g = ly, then fand g are both
; : -1 -1
invertible. Furthermore, f “=gandg ~=T.

Example: Let X = {1, 2, 3, 4} and f and g be functions from X to X given by f = {(1, 4), (2, 1), (3,
2), (4,3)}and g ={(1, 2), (2, 3), (3, 4), (4, 1)}. Prove that f and g are inverses of each other.
Solution: We check that

(N =g(f(D)=0A=1 =), (=21 =Fg1)=1(2)=1=I1).
€N@=9(@)=9(1)=2 =k2), (o) =19(2)=1(3)=2=Ix2).
(/3 =9(f(3) = 9(2) =3=I(3), (f-2)(3) =f(g(3)) =1(4)=3=Ix3).

(g /)4 =9(f(4) = 9(3) =4=I(4), (f-9)@) =1(g@) =f(1)=4=Ix4).

Thus, for all x € X, (g ° /)(X) = Ix(x) and (f > g)(x) = Ix(X). Therefore g is inverse of f and f is
inverse of g.

Example: Show that the functions f(x) = x3 and g(x) = xl/3 for x € R are inverses of one another.
Solution: f : R — R is defined by f(x) = x3 ; . R — R is defined by g(x) = xll3

(> 29 = f(g0) = fx") = XM = x = Ix(x)
ie., (7° 2)(X) = Ix(x)
and (g * )(X) = g(f(x)) = 90) = XM = x = Ix(x)

e, (2N =K0
Thus,f=g “org=f
i.e., fand g are inverses of one other.

***Example: f : R — R is defined by f(x) = ax + b, for a, b € R and a =/0. Show that f is
invertible and find the inverse of f.
(i) First we shall show that f is one-to-one

Let x1, X2 € R such that f(x1) = f(x2)
saxi+tb=ax2+Db
> axy] = ax
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= X1 =X2

.. T is one-to-one.
e To show that f is onto.

Let y € R(codomain) such that y = f(x) for some x € R.
> y=ax+h
sax=y—b
= x = (y-b)/a
Giveny € R(codomain), there exists an element x = (y-b)/a € R sueh that f(x) =Y.
. fisonto
> fis invertible and f 1(x)= (x-b)/a 1

Example: Let f : R — R be given by f(x) = x° — 2. Find f ™.
(i) First we shall show that f is one-to-one

Let x1, X2 € R such that f(x1) = f(x2)
= X31 —-2= X32 -
2= x31 = x32
= X1 =X2

.. f is one-to-one.
e To show that f is onto.

=>y= x3 -2
= x3 =y+2
> x=30+2
Giveny € R(codomain), there exists an element x = %/m € R such that f(x) =y.
. fisonto
> fis invertible and f_l(x) =3%k+2
Floor and Ceiling functions:
Let x be a real number, then the least integer that is not less than x is called the CEILING of x.
The CEILING of x is denoted by [x].

Examples: [2.15] =3,[ V5] =3,[ -7.4] =-7, [-2] =2
Let x be any real number, then the greatest integer that does not exceed x is called the Floor of x.

The FLOOR of x is denoted by [ x].

Examples: |5.14| =5, | V5] =2,| -7.6] =-8,6] =6, -3] =-3
Example: Let f and g abe functions from the positive real numbers to positive real numbers

defined by f(x) = | 2x], g(x) = X2, Calculate > gand g - f.
Solution: fe g(x) = f{g(x)) =f(x?)= | 2x°|
g ° (x) = g(f0)—g(| 2x))=(| 2x])°
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Recursive Function
Total function: Any function f : N" — N is called total if it is defined for every n-tuple in N,
Example: f(x, y) = x +y, which is defined for all x, y € N and hence it is a total function.

Partial function: Iff : D — N'where D N", then f is called a partial function.

Example: g(x, y) = x — y, which is defined for only X, y € N which satisfy x > y.
Hence g(x, y) is partial.
Initial functions:
The initial functions over the set of natural numbers is given by
e Zero function Z: Z(x) = 0, for all x.

e Successor function S: §(x) 7 x + 1, for all x.
e  Projection functionU :U (x ,x,..,x)=x forallntuples(x ,x,..,x),1<
i i 1 2 n i 1 2 n
i<n.
Projection function is also called generalized identity function.

For example, |J ll(x) = x for every x € N is the identity function.,

Usxxy=xU:'269=21)"269=6)°(28609=09.
Composition of functions of more than one variable:
The operation of composition will be used to generate the other function.

Let f1(x, y), f2(x, y) and g(x, y) be any three functions. Then the composition of g with f1 and f2 is
defined as a function h(x, y) given by

h(x, y) = g(fa(x, y), fa(x, y)).
In general, let f1, f2, ..., fn each be partial function of m variables and g be a partial function of n
variables. Then the composition of g with f1, f2, ..., fn produces a partial function h given by
h(x1, X2, ..., Xm) = g(f1(X1, X2, ..., Xm), ..., fn(X1, X2, ...Xm)).
Note: The function h is total iff f1, f2, ..., fpand g are total.
Example: Let f1(x, y) =x+vy, fa(x, y) = xy + y2 and g(x, y) = xy. Then
h(x, y) = g(fi(x, y), fa(x, 2y))
=g(x+y, xy+y
= (X +y)(xy +y)

Recursion: The following operation which defines a function f(x1, X2, ..., Xn, y) of n + 1 variables

by using other functions g(x1, X2, .., Xn) and h(x1, X2, ..., Xn, ¥, Z) of n and n + 2 variables,
respectively, is called recursion.

f(x1, X2, ..., Xn, 0) = g(X1, X2, ..., Xn)

f(X1, X2, ..., Xn, Y + 1) = h(x1, X2, ..., Xn, ¥, f(X1, X2, ..., Xn, ¥))
where y is the inductive variable.
Primitive Recursive: A function f is said to be Primitive recursive iff it can be obtained from the
initial functions by a finite number of operations of composition and recursion.

***Example: Show that the function f(x, y) = x +y is primitive recursive. Hence compute the

value of f(2, 4).
Solution: Given that f(x, y) = x +.
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Here, f(X, y) is a function of two variables. If we want f to be defined by recursion, we
need a function g of single variable and a function h of three variables. Now,

fx, y+1)=x+(y+1)
=(x+y)+1
=f(x,y) + L

Also, f(x, 0) = x.
We define f(x, 0) as

f(x, 0) =x=U1 (9
= S(f(x, ¥))
=S(U 5 (%, Y. f(x, )))
If we take g(x) = U1*(x) and h(x, y, 2) = S(U3°(x, Y, 7)), we get f(x, 0) = g(x) and f(x, y + 1) =
h(x, v, 2).
Thus, f is obtained from the initial functions Ull, U33, and S by applying composition once and
recursion once.
Hence f is primitive recursive.
Here,
f(2,0)=2
f(2, 4) = S(f(2, 3))
=5(5(f(2, 2)))
=S(S(S(f(2, 1))))
=S(S(S(S(f(2, 0))))
=S(S(S(5(2)))))
=S(S(S(3)))
=5(S(4))
=5(5)
=6
Example: Show that f(x, y) = X * y is primitive recursion.
Solution: Given that f(x, y) = x x y.
Here, f(x, y) is a function of two variables. If we want f to be defined by recursion, we
need a function g of single variable and a function h of three variables. Now, f(x, 0) =0
and
f(x, y+1)=x*x(y+1)=x*y
o f(x,y)+x
We can write
f(x, 0) =0 =Z(x) and
3 3
f(x, y +1) =f1(U3™(x, y, f(x, ¥)), U1"(x, y, f(X, ¥)))
where f1(X, y) = x +y, which is primitive recursive. By taking g(x) = Z(x) = 0 and h defined by
h(x,y,2) = f1(U33(x, Y, 2), U13(x, y, 2)) =f(x, y + 1), we see that f defined by recursion. Since g
and h are primitive recursive, f is primitive recursive. Example: Show that f(x, y) = X is primitive
recursive function. Solution: Note that xO =1 for x=/0 and we put xO =0forx=0.

y+l_ )y

Also, X’ =X %X

Here f(x, y) = %’ is defined as
f(x, 0) =1 =S(0) = S(Z(x))
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f(x,y +1) =x % f(x,y)
e U, , f(x, ) % Us>(x, ¥, f(x, y))

h(x,y, f(x, y) = f1(U13(x, y, f(X, ¥)), U33(x, y, f(x, y))) where f1(x, y) = X * y, which is
primitive recursive.

. f(x, y) is a primitive recursive function.

Example: Consider the following recursive function definition: If x <y thenf(x,y) =0, if y <x
then f(x, y) =f(x — y, y) + 1. Find the value of f(4, 7), f(19, 6).

0;x <
Solution: Given f(X1 Y) — y

T Uf(x yiy)+ 1 y<x

f4,7)=0 [..4<T]
f(19,6) =f(19 - 6,6) +1
=f(13,6) + 1
f(13,6) =f(13-6,6) +1
=f(7,6) + 1
f(7,6) =f(7 —6,6) +1
=f(1,6) +1
=0+1
=1
f(13,6) =f(7,6) + 1
=1+1
=2
f(19,6)=2+1
=3
Example: Consider the following recursive function definition: If x <y thenf(x,y) =0, if y <x
then f(x, y) =f(x — y, y) + 1. Find the value of f(86, 17)

Permutation Functions
Definition: A permutation is a one-one mapping of a non-empty set onto itself.
Let S ={ai, ay, ..., an} be a finite set and p is a permutation on S, we list the elements of S and
the corresponding functional values of p(a1), p(a2), ..., p(an) in the following form:
a; a, e a,

|

] p(al) p(az) o p(an) )
If p: S — Sisa bijection, then the number of elements in the given set is called the degree of its

permutation.
Note: For a set with three elements, we have 3! permutations.

Example: Let S = {1, 2, 3}. The permutations of S are as follows:
?"1'02 3\| {(1 Jsﬁp’?'l 23 zsﬁ 123 (123
Pi=l1 2 3hP=lp 1 31iPs=lp 3 11iPa=l3 2 11iPs=l3 1 21iPe=

\ )\ VN )\ N ) Q3 2
Example: Let S={1, 2, 3,4} and p : S — S be given by f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 3. Write
this in permutation notation.
Solution: The function can be written in permutation notation as given below:
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f:(l 2 3 4\

\2 1 4 3)
Identity Permutation: If each element of a permutation be replaced by itself, then such a

permutation is called the identity permutation.
a a .. a,)

Example: Let S = {a1, a2, , an}.then I= a g @ | is the identity permutation on S.
\ 1 2 n)
Equality of Permutations: Two permutations f and g of degree n are said to be equal if and only
iff(a) =g(a) foralla € S.
Example: LetS={1, 2, 3, 4}

(1234W (4132w

f=l3 1 2 4lio=la 3 2 1
\ )\ )
We have f(1)=9g(1)=3
f(2)=9(2) =1
f(3) =9(3) =2
f(4)=9g(4) =4
ie. f(a) =g(a) foralla € S.
Product of Permutations: (or Composition of Permutations
(or Gomposition of Permptations),

LetS={a,b,...h}andlet|\f(a) f() .. f(h))|'9:|Kg(a) g(b) .. g(h)}|

We define the composite of f and g as follows:
(Ia b ... h)la b™ ... h)
fog=lt@ fo) .. f(h) ol g@ ab) .. g(h))|
(" a b h
o I\f(g(a)_) FO®) - f(g(h))
early, /> g is a permutation.
V./oglsap (1234\ (1234}
Example: Let S={1, 2, 3,4} and letf = | and g= | Find /> gand g °
\2 1 4 3) 4 1 2 3)
f in the permutatjon from,
Kl 2 3 4\| (1 2 3 4\
Solution: fo g = g f=
\3 2 4 1} L3 4 2

Note: The product of two permutations of degree n need not be commutative.
Inverse of a Permutation:

a, a a,
If f is a permutation on S = {a1, a2, , an} such that f = (b b2 b w
K 1 2 n)
1

then there exists a permutation called the inverse f, denoted f * such that fo f_1 =f “of=

| (the identity permutation on S)
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L (b b, b,

wheref = |
\& a, a, )
(1 3 4 1 4
Example: If f = | \,then find f , and show that f of Lot 1of:I
\ 2 4 3 1)
1 (2 4 3 1) (1 2 3 4)
Solution: f = =] |
\1 2 3 4 )\ 4 1 3 2)
-1 _(1 2 3 4 2 3 4\ (1 2 3 4
oty 3 3 N, 2§ 9 2 3 2
\ )\ ) 4 y

similarly, Lo f= 1.2 fof = Top=1,

Cyclic Permutation: Let S = {a1, a2, ..., an} be a finite set of n symbols. A permutation f defined
on S is said to be cyclic permutation if f is defined such that

f(a1) = a2, f(a2) = a3, ...., f(ax—1) = an and f(an) = a1.
Example: Let S={1, 2, 3, 4}.
2

(1 4) . . :
Then | =(1 4)(2 3) is a cyclic permutation.
\ 4 3 2 1)

Disjoint Cyclic Permutations: Let S ={a1, a2, ..., an}. If f and g are two cycles on S such that
they have no common elements, then f and g are said to be disjoint cycles.

Example: Let S={1, 2, 3, 4, 5, 6}.
Iff=(145)and g=(236)thenfand g are disjoint cyclic permutations on S.

Note: The product of two disjoint cycles is commutative.

(1 2 3 4 5 6 7}

Example: Consider the permutation f = |
|2 3 4 5 1 7 6)

The above permutation f can be written as f = (1 2 3 4 5)(6 7). Which is a product of two disjoint
cycles.

Transposition: A cyclic of length 2 is called a transposition.

Note: Every cyclic permutation is the product of transpositions.

Example: f :|(1 2 3 4 5\ =(124)(35)=(14)(12)35).
\ 2 4 5 1 3)

Inverse of a Cyclic Permutation: To find the inverse of any cyclic permutation, we write its
elements in the reverse order.
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For example, (123 4)_1 =(4321).
Even and Odd Permutations: A permutation f is said to be an even permutation if f can be
expressed as the product of even number of transpositions.

A permutation f is said to be an odd permutation if f is expressed as the product of odd number of
transpositions.
Note:

(1) An identity permutation is considered as an even permutation.
(i) A transposition is always odd.

(.  The product of an even and an odd permutation is odd. Similarly the product of an
odd permutation and even permutations is odd.

Example: Determine whether the following permutations are even or odd permutations.

( 1 2 3 4 5 6 7 8)
@ 9=
2 5 7 8 6 1 4 3
0 n- ( > 3 4 5)
4 3 1 2 5
(1 2 3 4 5)
Solution: (i). For f = | =(124=(14@12

| 2 4 3 1 5)

= fis an even permutation
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(1 2 3 4 5 6 7 8)
2 5 7 8 6 1 4 3

=(1256)(3748)=(16)(15)(12)(38)(34)3B7)
= ( Is an even permutation.

(ii). For g =|

(i) h= (1 2 3 N 5\ =(1423)=(13)(12)(14)
\4 3 1 2 5)

Product of three transpositions

= his an odd permutation.
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Lattices
In this section, we introduce lattices which have important applications in the theory and design

of computers.

Definition: A lattice is a partially ordered set (Z, <) in which every pair of elements a, b € L has
a greatest lower bound and a least upper bound.
Example: Let Z" denote the set of all positive integers and let R denote the relation ‘division‘ in

Z+, such that for any two elements a, b € Z+, aRb, if a divides b. Then (Z+, R) is a lattice in
which the join of a and b is the least common multiple of a and b, i.e.

avb=a®b=LCMofaandb,
and the meet of a and b, i.e. a x b is the greatest common divisor (GCD) of aand b i.e.,
aAb=axb=GCDofaandb.
We can also write a+b = avb = a®b=LCM of a and b and a.b = arb = axb=GCD of a and b.
Example: Let n be a positive integer and Sp be the set of all divisors of n If n = 30, S30={1, 2,

3,5, 6,10, 15, 30}. Let R denote the relation division as defined in Example 1. Then (S30, R) is
a Lattice see Fig:

30
6 10 15
2 3 5
\

Example: Let A be any set and P (A) be its power set. The poset P (A), <) is a lattice in which the

meet and join are the same as the operations N and U on sets respectively.
S={a},P (A) = {4 {a}}
A={a)

¢
S={a b}, P(A)={¢ {a}, {a}. S}.

{a, b}

{a} {b}
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Some Properties of Lattice

Let (L, <) be a lattice and * and @ denote the two binary operation meet and join on (L, <). Then
forany a, b, c € L, wehave

(L1):axa=a, (L1)':a®a=a (Idempotent laws)

(L2): bxa = bxa, (L2)' : a ®b = b + a (Commutative laws)

(L3) : (atb)tc = at(bxc), (L3) : (adb)®c = ad (b + ) (Associative laws)

(L4) :ax(a+b) = a,(L4)' : a®(atb) = a (Absorption laws).
The above properties (L1) to (L4) can be proved easily by using definitions of meet and
join. We can apply the principle of duality and obtain (L1) to (L4).

Theorem: Let (L, <) be a lattice in which % and @ denote the operations of meet and join
respectively. Foranya, € L,a<b< axb=a< a® b=h.

Proof: We shall first prove that a« <b < a * b =h.
In order to do this, let us assume that a < 5. Also, we know that a <a.

Therefore a <a * b. From the definition of a * b, we have a * b <a.
Hencea<b = a*xb=a.

Next, assume that a * b = a; but it is only possible if a <b, that is,a * b=a = a <b.
Combining these two results, we get the required equivalence.

It is possible to show that a <b < a ® b =b in a similar manner.
Alternatively, from a * b = a, we have
be(@axb)y=b®a=adb
butb® (a* b)=b
Hence a @ b = b follows froma * b = a.
By repeating similar steps, we can show that a * b = a follows froma @ b =b.
Thereforea<b < axb=za< a®b=h.
Theorem: Let (L, <) be a lattice. Thenb<c = ga* b<a*e
la®b<a®c
Proof: By above theorema <b < a*xb=a< a® b=bh.
To show that a % b <a * c, we shall show that (a x b) x (a*c)=a*xb
(@axb)x(axc)=ax(bxa)*c
=ax(a*xb)xc
=(@ax*xa)*x(b*xc)
=ax (b *c)
—ax*xbh
~Ifb<cthenaxb<a=xc.Next,letb<c=b® c=c.

Toshowthata © b <a @ c. It sufficient to show that (a ® b) @ (a® c)=a @ c.
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Consider(a® b)® (a@a®c)=a® (bda)dc

—a®(@ad®b)oc
=(@a®a)dbec
=a® (b®c)
—ad®b

S fb<cthena® bh<a & c.

Note: The above properties of a Lattice are called properties of Isotonicity.
Lattice as an algebraic system:

We now define lattice as an algebraic system, so that we can apply many concepts
associated with algebraic systems to lattices.

Definition: A lattice is an algebraic system (L, *,®) with two binary operation _x‘and _®‘ on L
which are both commutative and associative and satisfy absorption laws.

Bounded Lattice:

A bounded lattice is an algebraic structure (L,A,v,0,1) sucha that (L,A,Vv) is a lattice, and the

constants 0,1€ L satisfy the following:
L for all xe L, xaAl=xand xv1=1

2. forall xe L, xA0=0 and xv0=x.
The element 1 is called the upper bound, or top of L and the element O is called the lower bound
or bottom of L.
Distributive lattice:

A lattice (L,v,A) is distributive if the following additional identity holds for all x, y, and z in L:
XA(YVZ)=(XAY)V(XAZ)
Viewing lattices as partially ordered sets, this says that the meet peration preserves nonempty
finite joins. It is a basic fact of lattice theory that the above condition is equivalent to its dual
XV(yAZ)=(xVy)A(xVvz)forall x,y,and z in L.
Example: Show that the following simple but significant lattices are not distributive.
a) 1 b) 1

0 0
Solution a) To see that the diamond lattice is not distributive, use the middle elements of the
lattice:aA(bvc)=aAl=abut(anb)v(@aac)=0v0=0,and a#0.
Similarly, the other distributive law fails for these three elements.
b) The pentagon lattice is also not distributive

75



Example: Show that lattice is not a distributive lattice.

p
O
[O <|>m
On
o

Sol. A lattice is distributive if all of its elements follow distributive property so let we verify the
distributive property between the elements n, | and m.
GLB(n, LUB(I, m)) = GLB(n, p) [~ LUB(l, m) = p]

=n (LHS)
also LUB(GLB(n, I), GLB(n, m)) = LUB(o, n); [- GLB(n, I) = 0 and GLB(n, m) = n]
=n (RHS)

S0 LHS = RHS.

But GLB(m, LUB(I, n)) = GLB(m, p) [-- LUB(I, n) = p]
=m (LHS)
also LUB(GLB(m, ), GLB(m, n)) = LUB(0, n); [~ GLB(m, I) = 0 and GLB(m, n) =n]
=n (RHS)

Thus, LHS # RHS hence distributive property doesn‘t hold by the lattice so lattice is not
distributive.

Example: Consider the poset (X, <) where X = {1, 2, 3, 5, 30} and the partial ordered relation <

is defined as i.e. if x and y €X then x <y means _x divides y*. Then show that poset (I+, <) is a
lattice.

Sol. Since GLB(x, y) =x Ay = lcm(X, y)

and LUB(X, y) = x Vv y=gcd(x,Y)

Now we can construct the operation table | and table Il for GLB and LUB respectively and the
Hasse diagram is shown in Fig.

Table I Table II
LUB 1 2 3 5| 30 GLB 1 2 3 3| 30
1 1 2 3 2 30 1 1 1 1 1 1
2 2 2 30 30 30 2 1 2 1 1 2
3 3 30 3 30 30 3 1 1 3 1 3
5 51 30 30 5 30 5 1 1 1 51 5
30 30 30 30 30 30 30 1 2 3 o 30

Test for distributive lattice, i.e.,
GLB(x, LUB(y, 2)) = LUB(GLB(x, y), GLB(X, 2))
Assume x =2,y =3 and z = 5, then
RHS:GLB(2, LUB(3, 5)) = GLB(2, 30) =2
LHS: LUB(GLB(2, 3), GLB(2, 5)) = LUB(1, 1) =1
SinceRHS # LHS, hence lattice is not a distributive lattice.
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Complemented lattice:

A complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in
which every element a has a complement, i.e. an element b satisfyingavb=1andaAb=0.
Complements need not be unique.

Example: Lattices shown in Fig (a), (b) and (c) are complemented lattices.

f}W ! b
uﬂ/ \Ob LID/ \ / \\
Ob  aQ Qe Ob
\ / ¢ \ ~
\\\ I ) y'--/-i

II:._J L L
{ {0 {
(cx) )] ()
Sol.

For the lattice (a) GLB(a, b) = 0 and LUB(X, y) = 1. So, the complement a is b and vise versa.
Hence, a complement lattice.

For the lattice (b) GLB(a, b) = 0 and GLB(c, b) =0 and LUB(a, b) =1 and LUB(c, b) =1; so
both a and ¢ are complement of b.
Hence, a complement lattice.

In the lattice (c) GLB(a, ¢) = 0 and LUB(a, ¢) = 1; GLB(a, b) =0 and LUB(a, b) = 1. So,
complement of a are b and c.

Similarly complement of ¢ are a and b also a and ¢ are complement of b.

Hence lattice is a complement lattice.

Previous Questions
1. a) Let R be the Relation R= {(X,y)/ x divides y )} . Draw the Hasse diagram?

b) Explain in brief about lattice?
c) Define Relation? List out the Operations on Relations

2. Define Relation? List out the Properties of Binary operations?

3. Let the Relation R be R={(1,2) ,(2,3),(3,3)} on the set A= {1,2,3}. What is the Transitive

Closure of R?

4. Explain in brief about Inversive and Recursive functions with examples?

5. Prove that (S, <) is a Lattice, where S= {1,2,5,10} and < is for divisibility. Prove that it is also
a Distributive Lattice?

6. Prove that (S,<) is a Lattice, where S= {1,2,3,6} and < is for divisibility. Prove that it is also a
Distributive Lattice?

7. Let A be a given finite set and P(A) its power set. Let < be the inclusion relation on the
elements of P(A). Draw Hasse diagrams of (P(A), <) for A={a}; A={a,b}; A={a,b,c} and
A={a,b.c.d}.

8. Let Fx be the set of all one-to-one onto mappings from X onto X, where X={1,2,3}. Find all
the elements of Fx and find the inverse of each element.

9. Show that the function f(x) = x+y is primitive recursive.

10. Let X={2,3,6,12,24,36) and a relation <‘ be such that x< _if x divides y. Draw the Hasse

diagram of (x,<).

11.1f A={1,2,3,4} and P={{1,2} {3}.{4}} is a partition of A, find the equivalence relation
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determined by P.

12. Let X={1,2,3} and f, g, h and s be functions from X to X given by f={<1,2>, <2,3>, <3,1>}
g={<1,2>,<2,1>,<3,3>} h={<1,1>, <2,2>, <3,1>} and s={<1,1>, <2,2>, <3,3>}. Find
fog, fohog, gos, fos.

13. Let X={1,2,3,4} and R={<1,1>, <1,4>, <4,1>, <4,4>, <2,2>, <2,3>, <3,2>, <3,3>}. Write the
matrix of R and sketch its graph.

14.Let X = {a,b,c,d,e} and let C = {{a,b},{c},{d,e}}. Show that the partition C defines an
equivalence relationon X.  y /-

15. Show that the function f(x)= ' when xiseven s primitive recursive.

i (x =1) / 2; when xis odd
16. If A={1,2,3,4} and R,S are relations on A defined by R={(1,2),(1,3),(2,4),(4,4)}
S$={(1,1),(1,2),(1,3),(1,4),(2,3),(2,4)} find R0 S, S0 R, R?, 2, write down there matrices.
17. Determine the number of positive integers n where 1<n<2000 and n is not divisible by2,3 or
5 but is divisible by 7.
18. Determine the number of positive integers n where 1<n<100 and n is not divisible by2,3 or 5.
19. Which elements of the poset /({2,4,5,10,12,20,25},/) are maximal and which are minimal?
20. Let X={(1,2,3} and f,g,h and s be functions from X to X given by f={(1,2),(2,3),(3,1)},
9={(1,2),(2,1),(3,3)}, h={(1.1),(2,2),(3,1) and s={(1,1),(2,2),(3,3)}-

Multiple choice questions
1.A is an ordered collection of objects.
a) Relation b) Function c¢) Set d) Proposition
Answer: c
2. The set O of odd positive integers less than 10 can be expressed by :
a){1,2,3} Db){1,3,57 9} c){1,259}d) {1,579, 11}
Answer: b
3. Power set of empty set has exactly subset.
a) One b) Two c) Zero d) Three
Answer: a

4. What is the Cartesian product of A = {1, 2} and B = {a, b}?
a) {(1, a), (1, b), (2, a), (b, b)} b) {(1,1), (2, 2), (a ), (b, b)}
c){(1, ), (2, ), (1, b), (2, b)} d) {(1, 1), (a a), (2, a), (1, b)}

Answer: c

5. The Cartesian Product B x A is equal to the Cartesian product A x B. Is it True or False?
a) True b) False
Answer: b

6. What is the cardinality of the set of odd positive integers less than 10?
a)1l0 b)5 «¢)3 d)20

Answer: b

7. Which of the following two sets are equal?
a) A={1, 2}and B = {1} by A={1,2}and B={1, 2, 3}
c)A={1,2,3YandB={2,1,3} d)A={1,2,4}andB={1, 2, 3}
Answer: ¢

oo

. The set of positive integers is :
a) Infinite b) Finite ¢) Subset d) Empty
Answer: a
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9. What is the Cardinality of the Power set of the set {0, 1, 2}.
a8 b6 c)7 d)I9
Answer: a
10. The members of the set S = {x | x is the square of an integer and x < 100} is-----
a) {0, 2, 4,5,9, 58, 49, 56, 99, 12} b) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}
c) {1, 4,9, 16, 25, 36, 64, 81, 85, 99} d) {0, 1, 4,9, 16, 25, 36, 49, 64, 121}
Answer: b
11. Let R be the relation on the set of people consisting of (a,b) where aa is the parent of b. Let S
be the relation on the set of people consisting of (a,b) where a and b are siblings. What are SocR
and RoS?
A) (a,b) where a is a parent of b and b has a sibling; (a,b) where a is the aunt or uncle of b.
B) (a,b) where a is the parent of b and a has a sibling; (a,b) where a is the aunt or uncle of b.
C) (a,b) where a is the sibling of b's parents; (a,b) where aa is b's niece or nephew.
D) (a,b) where a is the parent of b; (a,b) where a is the aunt or uncle of b.
12. On the set of all integers, let (x,y)ER(X,y)€R iff xy>1xy>1. Is relation R reflexive,
symmetric, antisymmetric, transitive?
A) Yes, No, No, Yes B) No, Yes, No, Yes
C) No, No, No, Yes D) No, Yes, Yes, Yes E) No, No, Yes, No
13. Let R be a non-empty relation on a collection of sets defined by ARB if and only if AN B
= @Then (pick the TRUE statement)

A.R is relexive and transitive B.R is symmetric and not transitive
C.R is an equivalence relation D.R is not relexive and not symmetric
Option: B

14. Consider the divides relation, m | n, onthe set A={2, 3,4, 5, 6, 7, 8, 9, 10}. The cardinality
of the covering relation for this partial order relation (i.e., the number of edges in the Hasse
diagram) is

@4 ()6 ()5 (d)8 (e)7
Ans:e

15. Consider the divides relation, m | n, on the set A={2, 3, 4, 5, 6, 7, 8, 9, 10}. Which of the

following permutations of A is not a topological sort of this partial order relation?

(@ 7,2,3,6,9,54,10,8 (b) 2,3,7,6,9,5,4,10,8
(c) 2,6,3,9,5,7,4,10,8 (d) 3,7,2,9,5,4,10,8,6
(e) 3,2,6,9,5,7,4,10,8

AnNs:.c

16. Let A={2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16} and consider the divides relation
on A. Let C denote the length of the maximal chain, M the number of maximal elements, and
m the number of minimal elements. Which is true?
@C=3,M=8,m=6 b)C=4,M=8m
c©C=3,M=6,m=6 @W)C=4,M=6,m
eC=3,M=6,m=4
Ans:a
17. What is the smallest N > 0 such that any set of N nonnegative integers must have two distinct
integers whose sum or difference is divisible by 1000?
(a) 502 (b) 520 (c) 5002 (d) 5020 (e) 52002
Ans:a
18. Let R and S be binary relations on a set A. Suppose that R is reflexive, symmetric, and transitive and
that S is symmetric, and transitive but is not reflexive. Which statement is always true for any such R
and S?
(@) R U S is symmetric but not reflexive and not transitive.
(b) R U S is symmetric but not reflexive.
(c) R U Sis transitive and symmetric but not reflexive

6
4
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19.

20.

21.

22.

23.

24,

25:

26.

27.

28.

29.

(d) R U Siis reflexive and symmetric. (e) R U S is symmetric but not transitive.
Ans:d

Let R be a relation on a set A. Is the transitive closure of R always equal to the transitive
closure of R?? Prove or disprove.

Solution: Suppose A ={1, 2,3} and R = {(1, 2),(2, 3)}. Then R2 = {(1, 3)}.

Transitive closure of R is R+ = {(1, 2),(2, 3),(1, 3)}.

Transitive closure of R? is {(1, 3)}.

They are not always equal.
Suppose R1 and R2 are transitive relations on a set A. Is the relation R1 U R2 necessariy a
transitive relation? Justify your answer.

Solution: No. {(1, 2)} and {(2, 3)} are each transitive relations, but their union

{(1, 2),(2, 3)} is not transitive.

Let D30 = {1, 2, 3, 4, 5, 6, 10, 15, 30} and relation | be partial ordering on D3o. The all lower
bounds of 10 and 15 respectively are

Al,3 B.1,5 C.1,3,5 D.None of these Option: B
Hasse diagrams are drawn for

A.partially ordered sets B.lattices C.boolean Algebra  D.none of these

Option: D

A self-complemented, distributive lattice is called
A.Boolean algebra  B.Modular lattice C.Complete lattice ~ D.Self dual lattice
Option: A
Let D30 ={1, 2, 3,5, 6, 10, 15, 30} and relation | be a partial ordering on D30. The lub of
10 and 15 respectively is
A.30 B.15 C.10 D.6 Option: A
Let X ={2, 3, 6, 12, 24}, and < be the partial order defined by X <Y if X divides Y.
Number of edges in the Hasse diagram of (X, <) is
A3 B4 C5 D.Noneofthese
Option: B
Principle of duality is defined as
A.<isreplaced by> B.LUB becomes GLB
C.all properties are unaltered when < is replaced by >
D.all properties are unaltered when < is replaced by > other than 0 and 1 element.

Option: D

Different partially ordered sets may be represented by the same Hasse diagram if they are
A.same B.lattices with same order  C.isomorphic D.order-isomorphic
Option: D

The absorption law is defined as
Aa *(a*b)=b Ba*(a®b)=b Ca*(a*b)=a@bDa*(adb)=a
Option: D

A partial order is deined on the set S = {x, ai, a2, as,...... &, Y} as x<aiforalliand &

<y for all i, where n > 1. Number of total orders on the set S which contain partial

order <is

B.n C.n+2D.n! Option: D
30.

Let L be a set with a relation R which is transitive, antisymmetric and reflexive and for
any two elements a, b € L. Let least upper bound lub (a, b) and the greatest lower
bound glb (a, b) exist. Which of the following is/are TRUE ?
isa Poset B.L is aboolean algebra C.L is a lattice D.none of these
Option: C
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UNIT-3
Algebraic Structures

Algebraic Systems with One Binary Operation

Binary Operation
Let S be a non-empty set. Iff : § x .§ — S'is a mapping, then f is called a binary
operation or binary composition in S.

The symbols +, -, %, @ etc are used to denote binary operations on a set.
e Fora,beS=a+b&S = +isabinaryoperation in S.

e Fora,beS=a-be&S=isabinaryoperationins.

e Fora,beS=a-be&S= cisabinaryoperationinS.

e Fora,beS=a*xbe&S= xisabinaryoperationins.
e This is said to be the closure property of the binary operation and the set S is said to be
closed with respect to the binary operation.

Properties of Binary Operations

Commutative: * isa binary operation inaset S. If fora, b € S, a * b =b x a, then x is said to be
commutative in S. This is called commutative law.

Associative: x is a binary operation in a set S. If for a, b, ¢ € S, (atb)+c = ax(bxc), then * is said to
be associative in S. This is called associative law.

Distributive: o, * are binary operations in S. If fora, b,c €S, (i)a< (b * c)=(a<b) x (a-c), (ii)

(bxc)ea=(b-a)x(cea),then - issaid to be distributive w.r.t the operation *.
Example: N is the set of natural numbers.

()  +,-arebinaryoperations in N, since fora,b €N,a+b&Nanda:-b &€ N. In
other words N is said to be closed w.r.t the operations + and -.

(i)  +,-are commutative in N, since fora,b €N,a+b=b+aanda-b=b-a.

(iii) ~ +, - are associative in N, since for a, b, c €N,
at+t(b+c)=(a+b)+canda-(b-c)=(a-b)-c.

(iv) is distributive w.r.t the operation + in N, since fora,b,c €N,a - (b+c)=a-b+a-
cand(b+c)-a=b-a+c-a
(v) The operations subtraction (=) and division (<) are not binary operations in N, since

for 3,5 € N does not imply 3 —5 & N and §5 €N.
Example: A is the set of even integers.

(i) +, - are binary operations in A, since fora,b € A,a+b & Aanda b € A.
(i) +, - are commutative in A, since fora,b € Aja+b=b+aanda-b=b-a.

(ii) +, - are associative in A, since for a, b, ¢ €A,
at+t(b+c)=(a+b)+canda-(b-c)=(a-b)-c.

(iv) - is distributive w.r.t the operation + in A, since fora,b,c € A, a-
(b+c)=a-b+a-cand(b+c)-a=b-a+c-a.
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Example: Let S be a non-empty set and - be an operation on S defined bya-b=afora, b €S.
Determine whether o is commutative and associative in S.

Solution: Sincea-b=afora,be Sandb-a=bfora,b € S.
=>qgebbea.

". o is not commutative in S.
Since(a°b)ecc=a°c=a

a°(bec)=a-b=afora,b,ces.
.. o is associative in S.

Example: o is operation defined on Z suchthatabh =a+ 5 — ab fora, b € Z. Is the operation - a
binary operation in Z? If so, is it associative and commutative in Z?

Solution: Ifa,b € Z,wehavea+b &€ Z, abe Zanda+b —ab € Z.
=>acb=a+b—ab el
.. o is a binary operation in Z.
=>acb=b-a.

.. e Is commutative in Z.

Now
(aeb)ec=(aeb)+c—(a°b)
=za+b—ab+c—(a+b—ab)c
=a+b—ab+c—ac— bc+abc
and

ac(bec)=a+(boc)—a(bec)
=a+b+c—bc—a(b+c— b
=a+b+c—bc—ab—ac+abc
=a+b—ab+c—ac— bc+abc
= (a°b)ec=ac(b°c)...
° is associative in Z.
Example: Fill in blanks in the following composition table so that - is associative in S = {a,b,c,d}.

cla|bfc|d
alalbfc|d
blblafc|d
clc|d|c|d
d

Solution: dea=(ceb)ea[. c°ob=d]

=co(bea)[. °isassociative]

=co°b

=d
deb=(ceb)eb=co(beb)=cca=c.
dec=(ceb)ec=co(bec)=cec=C.
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ded=(ceob)eo(ceb)

=co(beoc)eb

=coc°b

=CO(COb)

=cod

=d

Hence, the required composition table is

cla|b|c|d
alal|b|c]|d
bfbla|c|d
clc|d|c|d
d{d|c|c]|d

Example: Let P (S) be the power set of a non-empty set S. Let N be an operation in P (S). Prove
that associative law and commutative law are true for the operation in P (S).

Solution: P(S)= Set of all possible subsets of S.
Let A,B € P(S).
SinceASCS,BSS=>ANBCSS=ANBE P(S).
.. Nis a binary operation in P (S).
AlsoANB=BNA

.. N is commutative in P (S).
AgainANB,BNC,(ANB)NCand A N (B N C) are subsets of S.

L (ANBNCAN(BNC) EP(S).
Since(ANB)NC=4AN(BNC)
.. N is associative in P (S).

Algebraic Structures

Definition: A non-empty set G equipped with one or more binary operations is called an
algebraic structure or an algebraic system.

If - is a binary operation on G, then the algebraic structure is written as (G, °).

Example: (N, +), (O, -), (R, +) are algebraic structures.

Semi Group

Definition: An algebraic structure (S, <) is called a semi group if the binary oper-ation ° is
associative in S.

That is, (S, °) is said to be a semi group if

) aabeS=a-beSforalla,besS

i) (@a°b)ec=ac(b-c)foralla,b,ceS.
Example:

1.(N,+)isasemigroup. Fora,b&N=a+b&Nanda,b,ceN= (a+b)+c=a+(b+c).
2. (Q, —) is not a semi group. For 5,3/2 , 1 € Q does not imply (5-3/2) -1 =5—(3/2 —1).

3.(R,+)isasemigroup. Fora,be R=>a+b& Randa,b,c€ R= (a+Db)+c=a+t(b+c).
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Example: The operation  is defined by a - b =a for all a, b € S. Show that (S, °) is a semi group.
Solution: Leta,beS=>a-b=ae&s.

.. oisabinary operationin S. Leta,b,c € S,a°(bec)=a°b=a
(@aeb)ec=acc=a.

= o IS associative in S.
. (S, ) Is a semi group.

Example: The operation < is defined byacb=a+b —ab forall a, b € Z. Show that (Z, <) is a
semi group.

Solution: Leta,be Z=>acb=a+b—ab € Z
.. o iIs a binary operation in Z.

Leta, b, c e Z
(aeb)ec =(@+b—ab)e°cC
=a+b—ab+c—(a+b—ab)c
=a+b+c—ab— bc— ac+abc

ac(bec)y =a°(b+c—bc)
=a+(b+c—bc)—alb+c— bc)
=a+b+c—bc—ab—ac+

abc = (acb)ec=ac-(bec).

= o jsassociative in Z. .. (Z, ) is semi group.

Example: (P (S), N) is a semi group, where P (S) is the power set of a non-empty set S.
Solution: P (S)= Set of all possible subsets of S.

Let A,B € P (S).

SinceASS,BSS=>4ANBSS=>A4ANBeEP(S).

". N is a binary operation in P (S). Let A, B, C €P (S).

S (ANBNCANBNC)EP(S).Since(ANB)NC
=ANBNO)

.. Nis associative in P (S).
Hence (P (S), N) is a semi group.

Example: (P (S), U) is a semi group, where P (S) is the power set of a non-empty set S.
Solution: P (S)= Set of all possible subsets of S.

Let A,B € P (S).

SinceAcSSBSS=>=AUB<cS=>AUBEP(S).

.. U is a binary operation in P (S). Let A, B, C € P (S).
SLJ(AUB)UCAUBUC)eP(S).Since(AuB)uUC=AuU (BUOC)
.. U is associative in P (S).

Hence (P (S), L) is a semi group.

84



Example: Q is the set of rational numbers, < is a binary operation defined on Q suchthata - b = a
—b+abfora, b € Q. Then (Q, °) is not a semi group.

Solution: For a, b, c € Q,

(@aeb)ec=(a°b)—c+(a°b)
=a—b+ab—c+(a—b+ab)c
=a—b+ab—c+ac— bc+abc

a°(bec)=a—(beoc)+a(bec)

=a — (b — c+bc) +a(b — cne)
=a —b+c— bc+ab— ac+ abc.
Therefore, (a°b) o c=a-(b-°c).

Example: Let (A, %) be a semi group. Show that for a, b,cinAifaxc=c%aandbxc=cxDb,
then (a x b) x c=c * (a * b).

Solution: Given (A, %) be a semi group,a*c=c*aandbxc=cxb.
Consider

(@axb)xc=ax*x(b*xc)[. Aisseme group]
=ax(cxb)["bxc=c*Db]
=(a*c) x b[. Aisseme group]
=(c*ka)xb[. a*xc=c*a
=c % (a x b) ['." Ais seme group].
Homomorphism of Semi-Groups
Definition: Let (S, ¥) and (T, °) be any two semi-groups. A mapping f : S — T such that for any

two elements a, b € S, f(a * b) =f(a) - f(b) is called a semi-group homomorphism.
Definition: A homomorphism of a semi-group into itself is called a semi-group en-domorphism.

Example: Let (S1, x1), (S2, *2) and (S3, *3) be semigroupsandf:S1 — S2 andg: S2 — S3 be
homomorphisms. Prove that the mapping of g ° /: S1 — S3is a semigroup homomorphism.
Solution: Given that (S1, 1), (S2, *2) and (S3, %3) are three semigroups and f: S —

Sz and g : S2 — S3 be homomorphisms.

Let a, b be two elements of S1.

(¢ f)(a +1 b) = g[f(a 11 b)]

= g[f(a) *2 f(b)] (- f is a homomorphism)
= g(f(a)) *3 g(f(b)) (. g is a homomorphism)
=(g > f)(a) ¥3 (g ° )(b)

.. g o f'is a homomorphism.
Identity Element: Let S be a non-empty set and ° be a binary operation on S. If there exists an

elemente € Ssuchthatace=e-a=a, fora € S, then e is called an identity element of S.
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Example:
(i) Inthe algebraic system (Z, +), the number O is an identity element.
(i) In the algebraic system (R, -), the number 1 is an identity element.
Note: The identity element of an algebraic system is unique.

Monoid
Definition: A semi group (S, °) with an identity element with respect to the binary operation °
is known as a monoid. i.e., (S, °) is a monoid if S is a non-empty set and ° is a binary
operation in S such that - is associative and there exists an identity element w.r.t .
Example:

1. (Z, +) is a monoid and the identity is 0.

2. (Z, +) is a monid and the identity is 1.

Monoid Homomorphism

Definition: Let (M, x) and (T, ) be any two monoids, em and et denote the identity elements

of (M, %) and (T, °) respectively. A mapping f : M — T such that for any two elements a, b €
M,

f(a % b) =f(a) - f(b) and
flem) = et
is called a monoid homomorphism.
Monoid homomorphism presents the associativity and identity. It also preserves

commutative. If a € M is invertible and a * € M is the inverse of a in M, then f(afl) is the
. . -1 -1
inverse of f(a), i.e., f(a ) =[f(a)] ~.

Sub Semi group
Let (S, ) be a semi group and T be a subset of S. Then (T, %) is called a sub semi group of (S,

x) whenever T is closed under %. i.e., axb €T, foralla,beT.

Sub Monoid
Let (S,*) be a monoid with e is the identity element and T be a non-empty subset of S. Then

(T, %) is the sub monoid of (S, x)ife€ Tandaxb € T, whenever a, b € T. Example:

1. Under the usual addition, the semi group formed by positive integers is a sub semi group of
all integers.

2. Under the usual addition, the set of all rational numbers forms a monoid. We denote it (Q,
+). The monoid (Z, +) is a submonid of (Q, +).

3. Under the usual multiplication, the set E of all even integers forms a semi group.

This semi group is sub semi group of (Z, -). But it is not a submonoid of (Z, -), because 1=/E.

Example: Show that the intersection of two submonoids of a monoid is a monoid.
Solution: Let S be a monoid with e as the identity, and S1 and S2 be two submonoids of S.

Since S1 and S» are submonoids, these are monoids. Therefore e € S1and e € Sp.
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Since S1 NS2 is a subset of S, the associative law holds in S1 NS2, because it holds in S.
Accordingly S1 N S2 forms a monoid with e as the identity.

Invertible Element: Let (S,°) be an algebraic structure with the identity element e in S w.r.t

. Anelement a € S is said to be invertible if there exists an element x& Ssuchthata°x=x-°
a=e.

Note: The inverse of an invertible element is unique.

From the composition table, one can conclude

1. Closure Property: If all entries in the table are elements of S, then S closed under .

2. Commutative Law: If every row of the table coincides with the corresponding column,
then < is commutative on S.

3. Identity Element: If the row headed by an element a of S coincides with the top row, then a
is called the identity element.

4. Invertible Element If the identity element e |s placed in the table at the intersection of the

row headed by a and the column headed by b then b —aanda “=b.
Example: A={1, v, @ }.

1 1 w w?2

o | o |lo |1l

w2 | w2 1 (@]

From the table we conclude that
1. Closure Property: Since all entries in the table are elements of A. So, closure property is
satisfied.

2. Commutative Law: Since 1St, an and 3rd rows coincides with 1St, 2'”OI and 3rdcolumns

respectively. So multiplication is commutative on A.
3. Identity Element: Since row headed by 1 is same as the initial row, so 1 is the identity
element. ,

-1

4. Inverses: Clearly 171210 1202 (@) "= o

Groups
Definition: If G is a non-empty set and © is a binary operation defined on G such that the
following three laws are satisfied then (G, °) is a group.

Associative Law: Fora,b,c € G, (ac°b)cc=a-(b-c)

Identity Law: There exists e € Gsuchthatace=a=e-aforeverya € G, eiscalled an
identity element in G.

Inverse Law: For each a € G, there exists an element b € G such that a°b = bca =€, b is called
an inverse of a.
Example: The set Z of integers is a group w.r.t. usual addition.

().ForabeZ=>a+beZ
il Fora,b,cezZ (a+b)+c=a+(b+c)
. O0€Zsuchthat0+a=a+0=aforeacha& G
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.. 0 is the identity element in Z.
M Fora & Z, there exists —a € Zsuchthata+ (—a) =(—a) +a=0.

. —aisthe inverse ofa. (Z, +) isa

group.
Example: Give an example of a monoid which is not a group.
Solution: The set N of natural numbers w.r.t usual multiplication is not a group.

(). Fora,be N=a-bh.

i Fora,b,ceN,(a-b)-c=a-(b-c).

@ 1&Nsuchthatl-a=a-1=a,foralla&N.
. (N, ) is a monoid.

M Thereisnon € Nsuchthata-n=n-a=1fora € N.
.. Inverse law is not true.

.. The algebraic structure (N, -) is not a group.
Example: (R, +) is a group, where R denote the set of real numbers.

Abelian Group (or Commutative Group): Let (G, %) be a group. If ¥ is com-mutative that is
axb=Dbxaforalla, b€ Gthen (G, ) is called an Abelian group.

Example: (Z, +) is an Abelian group.

Example: Prove that G = {1, w, »"} is a group with respect to multiplication where 1, w, a)2

are cube roots of unity.
Solution: We construct the composition table as follows:

2
1 ® W
2
1 1 W
3
o | o a)2 w =1
2 2 3_ 4 _
o |lo|low=1lw =0

The algebraic system is (G, ) where a)3 = 1 and multiplication - is the binary opera-tion on G.
From the composition table; it is clear that (G, -) is closed with respect to the oper-ation
multiplication and the operation - is associative.

1 is the identity element in Gsuchthat1-a=a=a" 1, VaeG.
Each element of G is invertible

1 1-1=1= 1lisits owninverse.
2 3 2. . . . 2.
2 00 =0 =1= o isthe inverse of ® and o is the inverse of ® In G.

. (G,)isagroupanda-b=b-a, Va, b € G, that is commutative law holds in
G with respect to multiplication.

.. (G, ) is an abelian group.
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Example: Show that the set G = {1, —1, i, —i} where i = v/-1 is an abelian group with respect
to multiplication as a binary operation. Solution: Let us construct the composition table:

1 -1 0 | —i
1 1 -1 0 | —i
L1 1 i)
I | —i| -1 1
-1 | —i I 1] -1

From the above composition, it is clear that the algebraic structure (G, ) is closed and
satisfies the following axioms:

Associativity: For any three elementsa, b,c € G, (a-b)-c=a- (b-c).
Since

1-(-1-)=1-—-i=-i

@--1)i=-1-i=-i

=>1-(-1-)=1--1)-i
Similarly with any other three elements of G the properties holds.

.. Associative law holds in (G, ).
Existence of identity: 1 is the identity element in (G, ) suchthat1-a=a=a-1, Va€G.
Existence of inverse: 1-1=1=1-1= 1is inverse ofl.

(-1 -(-1)=1=(-1) (1) = —1listheinverse of (—1)

i-(-))=1=-i-i= —iisthe inverse ofiinG.

—i-i=1=1i-(-i) = iisthe inverse of —i in G.
Hence inverse of every element in G exists.
Thus all the axioms of a group are satisfied.

Commutativity: a-b=b-a, Va,b & Ghold inG.
1-1=1=1-1; -1:-1=-1=1--1
i-1=i=1-i;i-—i=—i-i=1etc.
Commutative law is satisfied.
Hence (G, -) is an abelian group.

Example: Prove that the set Z of all integers with binary operation * definedbya x b=a+b
+1, V a, b €Zis an abelian group. Solution:
Closure: Leta,b € Z. Sincea+b &€ Zanda+b+1 € Z.
.. Zis closed under x.
Associativity: Let a, b, c € Z.

Consider (ax b) xc=(a+b+1)*c
=at+b+1+c+1
=atb+c+2

also
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ax(bxc)=ax(b+c+1l)
=a+b+c+1+1
=a+b+c+2

Hence (a*b) xc=a* (b *c)fora,b,ceZ

Existence of Identity: Leta € Z. Lete € Zsuchthate xa=a*e=a,l.e,a+e+1
=a

>e=-1

e = —1is the identity element in Z.

Existence of Inverse: Leta € Z. Letb € Zsuchthata x b =e.

>a+b+1=-1
b=-2-a

.. For every a € Z, there exits —2—a € Z such that ax(—2—a) = (—2—a)xa = —1.

.. (Z, %) is an abelian group.
Example: Show that the set Q+ of all positive rational numbers forms an abelian group under
the composition defined by - such that a - b = ab/3 for a, b € Q+. Solution: Q+ of the set of all
positive rational numbers and for a, b € Q+, we have the operation - such that a - b = ab/3.

Associativity: a,b,c € Q+= (a°b)ec=ac (b-°c).
Since abe Q+ and ab/3&€Q+.
Associativity: a, b, c €Q+ =(a°b)ecc=ac (b-c).
Since (a°b)oc=(ab/3)-c=[ab/3 .c]/3=al3(bc/3)=al3(beoc)=ac°(b-c).

Existence of Identity: Let a € Q+. Lete € Q+suchthate- a =a.

e, ea3=a
=>ea—3a=0=>(—-3a=0
=e¢—3=0 (. a=0)
>e=3

.. € = 3is the identity element in Q+.
Existence of Inverse: Let a € Q+. Letb €Q+suchthata- b =e.
=ab/3 =3
b=9/a (. a=0)
.. For every a € Q-+, there exists 9/a € Q+suchthat a > 9/a = 9/a°a=3.

Commutativity: Leta,b € Q+ = a°b=b°a.
Since a ° b =ab/3=ba/3 =b - a.
(Q+, ©) is an abelian group.

Exercises: 1. Prove that the set G of rational numbers other than 1 with operation @ such that

a® b=a+b—abfora, b &G isabelian group.
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2. Consider the algebraic system (G, *), where G is the set of all non-zero real numbers and %

is a binary operation defined by: ax b = a—b4 , Va, b € G. Show that (G, %) is an
Addition modulo m

We shall now define a composite known as -addition modulo mll where m is fixed integer.
If a and b are any two integers, and r is the least non-negative reminder obtained by dividing
the ordinary sum of a and b by m, then the addition modulo m of a and b is r symbolically
atmb=r, 0<r<m.

Example: 20 +6 5 =1, since 20 + 5 =25 =4(6) + 1, i.e., 1 is the remainder when 20+5 is
divisible by 6.
Example: —15 +53 =3, since —15+ 3 =—-12=3(-5) + 3.
Multiplication modulo p
If a and b are any two integers, and r is the least non-negative reminder obtained by dividing
the ordinary product of a and b by p, then the Multiplication modulo p of a and b is r
symbolically

axpb=r, 0<r<p.

Example: Show that the set G = {0, 1, 2, 3, 4} is an abelian group with respect to addition
modulo 5.
Solution: We form the composition table as follows:

*5

NIFP|lO|lPMlW]lW
WIN|RP|O| DD

Al wWw|INMNIPLP|IO|lO
Ol | WIN|FL]|F
RO B WINIDN

Al NN, O

Since all the entries in the composition table are elements of G, the set G is closed with
respect to addition modulo 5.

Associativity: For any three elements a, b, ¢ € G, (a +s5b) +sc and a +5 (b +5 ¢) leave the
same remainder when divided by 5.

ie., (@+sb)+sc=a+5(b +5¢C)

(1+53) +54=3=1+5(3 +54) etc.

Existence of Identity: Clearly 0 € G is the identity element, since we have
0+59=4=9+50,V a € G.

Existence of Inverse: Each element in G is invertible with respect to addition modulo 5.

0 is its own inverse; 4 is the inverse of 1 and 1 is the inverse of 4.
2 is the inverse of 3 and 3 is the inverse of 2 with respect to addition modulo 5 in G.

Commutativity: From the composition table it is clear that a+sb =b+sa, V a,b € G.
Hence (G, +5) is an abelian group.
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Example: Show that the set G= {1, 2, 3, 4} is an abelian with respect to multipli-cation
modulo 5.
Solution: The composition table for multiplication modulo 5 is

X

s | 1f 2| 3| 4
1] 1 2 3] 4
2 | 2| 4] 1] 3
3| 3| 1 4 2
4 | 4] 3| 2[ 1

From the above table, it is clear that G is closed with respect to the operation x5 and the

binary composition X5 is associative; 1 is the identity element.

Each element in G has a inverse.
1 is its own inverse
2 is the inverse of 3
3 is the inverse of 2

4 is the inverse of 4, with respect to the binary operation xs.
Commutative law holds good in (G, Xs5).

Therefore (G, xs) is an abelian group.
Example: Consider the group, G ={1, 5, 7, 11, 13, 17} under multiplication modulo 18.

Construct the multiplication table of G and find the values of: 5% 7 tand 177t
Example: If G is the set of even integers, i.e., G={---, =4, 2,0, 2, 4, - - - } then prove that

G is an abelian group with usual addition as the operation. Solution: Let a, b, c € G.
.. We can take a = 2x, b =2y, c =2z, where x, y, z € Z
Closure:a,beG=>a+beC.

Sincea+b=2x+2y=2(x+y) € G.

Associativity: a,b,c € G=>a+(b+c)=(a+h)+c
Since
a+(b+c)=2x+(2y +22)

=2[x + (y +2)]

=2[(x +y) +1]

=(2x + 2y) + 2z

=(a+b)+c
Existence of Identity: a € G, there exists 0 € G suchthata+0=0+a=a. Sincea+0=
2x+0=2x=aand0+a=0+2x=2x=a

.. 0is the identity in G.

Existence of Inverse: a € G, there exists —a € G such that a+(—a) = (—a)+a =0.
Sincea+ (—a)=2x+(—2x)=0and (—a) +a=(—2x) + 2x =0.

.. (G, +) isagroup.

Commutativity: a,b e G=>a+b=b+a
Sincea+b=2x+2y=2(x+y)=2(y+x)=2y+2x=b + a.

.. (G, +) is an abelian group.
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Example: Show that set G = {x| x = 26‘3b for a, b € Z} is a group under multipli-cation.
Solution: Letx, y, z € G. We can take x = 2P y= 2'3% 2= 2|3m, wherep, q,r,s,I,me Z,
We know that (i). p+r,q+s&€ Z
(i). (p+n+l=p+(r+l),(q+s)+m=q+(s+m).
Closure:x,y €« G = x-y € G.
Sincex y= (2p3q)(2r35) =P e, Associativity: X,y,z€ G = (X y)-z=X-(y-2)
Since (x - y) - z = (2"3%2"3%(2'3™

=2(p+n+3(a+sym

=2p+(r+l)3q+(s+r|n)

=(2"3%(2"3°2'3™)

=x-(y-2)
Existence of Identity: Let x € G. We know that e = 2030 € G,since 0 € Z.
sox-e=2P392030 = P01 0 - oP3 -y and e x = 2%3%2P3% = 2P3%=x. . e € G such
thatx-e=e-x =X
C.e= 2030 is the identity element in G.
Existence of Inverse: Let x € G.
Nowy =2 P39 € G exists, since —p, —¢ €Z such that
x-y=2P3927P379=29%" —gandy . x= 273 12P39=2%"=¢
.. Foreveryx = 2P3% & G there exists y=2 "3 7cGsuchthatx-y=y-x=e... (G, )isa
group.
Example: Show that the sets of all ordered pairs (a, b) of real numbers for which a =/0 w.r.t
the operation * defined by (a, b) * (c, d) = (ac, bc + d) is a group. Is the commutative?
Solution: Let G = {(a, b)| a, b € R and a =/0}. Define a binary operation x on G by (a, b) * (c,
d) = (ac, bc + d), for all (a, b), (c, d) € G. Now we show that (G, *) is a group.
Closure: (a, b), (c,d) € G = (a, b) x (¢, d) =(ac, bc +d) € G.
Since a=/0, ¢ /0 = ac 0.
Associativity: (a, b), (c, d), (e, f) € G = {(a, b) x (c, d)} * (e, ) = (a, b) x {(c, d) x(e, N}

Since {(a, b) * (c, d)} * (e, f) = (ac, bc +d) *x (e, f)
= (ace, (bc + d)e +f)
= (ace, bce + de +f)

Also (a, b) x {(c, d) * (e, )} =(a, b) * (ce, de +f)
= (a(ce), b(ce) + de +f)
= (ace, bce + de +f)

Existence of Identity: Let (a, b)€G. Let (X, y)€ G such that (x, y)x(a, b)=(a,b)(x, y)=(a, b)
= (xa,ya+b)=(a, b)
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= xa=a,yatb=hb

=> x=1,(.-a<0andya=0= x=1landy=0(." a=0)
= (1, 0) € G such that (a, b) * (1, 0) = (a, b).
.. (1, 0) is the identity in G.
Existence of Inverse: Let (a, b) € G. Let (X, y) € G such that (x,y) * (a, b) = (1, 0)
= (xa, ya+b)=(1,0)
= xa=1ya+b=0= x=at,y=a
.. The inverse of (a, b) exits and it is (1/a,-b/a).
Commutativity: Let (a, b), (c,d) € G = (a, b) * (c, d) =(c, d) * (a, b)
Since (a, b) * (c, d) = (ac, bc +d) and (c, d) * (a, b) = (ca, da + b).
.. G is a group but not commutative group w.r.t .
Example: If (G, ) is a group then (a « b)f1 =b 'xa tforalla beG.
Solution: Let a, b € G and e be the identity element in G.

letacG=a *€Gsuchthat asa =a “xa=e and b€ G = b € G suchthat bib *=b L« b=
e.

Nowa,beG:a*beGand(a*b)fleG.

Consider
@xb)x(b “xa H)=ax[bx(b ~*a )] (by associativity law)
—ax[bxb Dxa ]
—ax(e*xa ) (bkb I=e)
-1
=axa  (eisthe identity)
=e
and

b lsxaY)ysx@xb)y=b Tx[a % @x*b)
=b Lk [@@ ‘xa)*b]
b L% [e % b]
b lxb
e
S@xb)yx(b xa H=b Txa Hx(axh)=e
@xb) T=b lxal foralla, b € G.

Note:

Lo aht=zab

2. (abc)_1 =¢ 7 la
3. If (G, +) isa group, then —(a + b) = (—b) + (—a)
4. —(a+b+c)=(-c¢)+(-b) +(—a).

1

94



Theorem: Cancelation laws hold good in G, i.e., foralla,b,c€ Gaxb=a*x c= b=c(left

cancelation law) b * a = ¢ % a = b = c (right cancelation law).
Proof: G is a group. Let e be the identity element in G.

-1 -1 -1
aeEG=a €Gsuchthataxa =a ~“*xa=e.
Consider

axb=axc

>a lx(axb)=a (ax*oc)

> (a_1 xa)xb= (a_1 x a) x ¢ (by associative law)
sexb=exc(a "isthe inverse of a inG)

= b = c (e is the identity element in G)
and

bxa=cx*a

= (b * a)af1 = (C * a) * at

> b * (a * afl) =c* (a* afl) (by associative law)
=>bkxe=cxe(. a*afl:e)

= b = c (e is the identity element in G)
Note:

1. If Gis an additive group,a+b=a+c=>b=candb+a=c+a=b=c.
2. In a semi group cancelation laws may not hold. Let S be the set of all 2 x 2 matrices over
integers and let matrix multiplication be the binary operation defined on S. Then S is a semi

group ?I th&abov? 8pe6§tlon. 0 0)
If A=| 0 0 | B=| 0 1)| ;C= |Kl Ojl ,then A, B, C € S and AB = AC, we observe that left

cancellation law is not true in the semi group.
3. (N, +) isasemi group. Fora, b,c €N
atb=a+c=>b+candb+a=c+a=b=c
But (N, +) is not a group.
In a semigroup even if cancellation laws holds, then semigroup is not a group.
Example: If every element of a group G is its own inverse, show that G is an abelian group.
Solution: Let a, b € G. By hypothesis atzab t=h

Then ab € G and hence (ab)_l = ab.
Now

(ab) *=ab
> b fal=ab
= ba=ab

.. G is an abelian group.
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Note: The converse of the above not true.
For example, (R, +), where R is the set of real numbers, is abelian group, but no element
except 0 is its own inverse.

Example: Prove that if a2 = a, then a = e, a being an element of a group G.
Solution: Let a be an element of a group G such that a2 =a. To prove thata =e.

a’=a=aa=a
-1 -1 -1
= (@aa)a "=aa "= a(aa )=e
ool ..

= ae=e[. aa "=e]>a=e[. ae=2a]
Example: In a group G having more than one element, if X% = X, for every x € G.
Prove that G is abelian.
Solution: Let a, b € G. Under the given hypothesis, we have a2 =a, b2 =b, (ab)2 = ab.

- a(ab)b = (aa)(bb) = a’h® = ab = (ab)® = (ab)(ab) = a(ba)b

= ab = ba (Using cancelation laws)
.. G is abelian.

Example: Show that inagroup G, fora, b € G, (ab)2 = a2b2 < Gisabelian. (May. 2012)

Solution: Leta, b € G, and (ab)2 = azbz. To prove that G isabelian.
Then

(ab)® = a’b®

= (ab)(ab) = (aa)(bb)

= a(ba)b = a(ab)b (by Associative law) = ba = ab, (by cancellation

laws)

= G is abelian.

Conversely, let G be abelian. To prove that (ab)2 = a2b2.

Then (ab)” = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a’b’.

***Example: If a, b are any two elements of a group (G, ), which commute. Show that
1.a ‘and b commute

2. b *and a commute

-1 -1
3.a “and b " commute.
Solution: (G, -) is a group and such that ab = ba.

1, ab=ba=a ‘(ab)=a “(ba)

= (@ tab=a ‘(ba)

= eb=(a "b)a

= b=(a ‘ba

= ba '=[(a ‘b)aja !
=(a 'b)aa 1
=(a b)e
=a 1
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-1
= a ~and b commute.

1 ab=ba = (ab)b = (ba)b -
= a(bb ) =

(ba)b > N

ae = b(ab )
= a=bh(ab 1)

= b la=b [bab )]
=(b b)(ab )]
=e(ab )
—ab !
~ b Land a commute.
2 ab=ba= (ab) ‘=(ba) *b Ta ‘=a ‘b
~ a tand b T are commute.
Order of an Element

-1

Definition: Let (G, %) be a group and a € G, then the least positive integer n if it exists such
that a" = e is called the order of a € G.

The order of an element a € G is be denoted by O(a).
Example: G = {1, -1, i, —i} is a group with respect to multiplication. 1 is the identity in G.

1'=1°=1%=.. . =12 00)=1
0%=(1*=(-1°=.. =12 Oo(-1) =2
i‘=i8=i?=...=1= o) =4
)*=(=)%=... =12 O(-) =4

Example: Ina group G, a is an element of order 30. Find order of a>.
Solution: Given O(a) = 30

> a30 = e, e is the identity element of G. Let O(a5) =n
5.n
= (a”) =e
sa = e, where n is the least positive integer. Hence 30 is divisor of 5n.
S.n=6.
Hence O(a5) =6

Sub Groups
Definition: Let (G, %) be a group and H be a non-empty subset of G. If (H, *) is itself is a

group, then (H, ) is called sub-group of (G, *).
Examples:
1. (Z, +) is a subgroup of (Q, +).
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2. The additive group of even integers is a subgroup of the additive group of all

integers.
3. (N, +) is not a subgroup of the group (Z, +), since identity does not exist in N under
+.
Example: LetG={1, -1, —ifand H={1, —1}.

Here G and H are groups with respect to the binary operation multiplication and H is a subset
of G. Therefore (H, -) is a subgroup of (G, -).

Example: Let H={0, 2, 4} < Zg. Check that (H, +) is a subgroup of (Zg, +6).
Solution: Zg = {0, 1, 2, 3, 4, 5}.

6 | O] 1f 2| 3| 4 5
0| Of 1] 21 3| 4 5
1 1] 2| 3| 4 § O
2 2 3| 4 5 O 1
3 3 4 5 Of 1 2
4 4 5 0 1] 2 3
) 50 0 1] 2 3 4
.. (Zs, +6) is a group.
H= {0, 2, 4}.

t6 | O] 2| 4

0| 0] 2 4

2 | 2] 4 0

4 | 4] 0| 2

The following conditions are to be satisfied in order to prove that it is a subgroup.
(). Closure: Leta,b € H= a+gb € H.

0,2eH=>0+62=2¢€ H.
(ii). Identity Element: The row headed by 0 is exactly same as the initial row.

.. 0 is the identity element.
(iii). Inverse: 0t=02"t=441=2
Inverse exist for each element of (H, +6).
.. (H, +¢) is a subgroup of (Ze, +6).
Theorem: If (G, %) isa group and H € G, then (H, %) is a subgroup of (G, %) if and only if
(la,beH=>axbeH;

(i) ac€H=a "€H.
Proof: The condition is necessary

Let (H, %) be a subgroup of (G, %).
To prove that conditions (i) and (ii) are satisfied.
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Since (H, ¥) is a group, by closure property we have a, b € H= ab € H.
Also, by inverse property a € H = a leH.

The condition is sufficient:

Let (i) and (ii) be true. To prove that (H, #) is a subgroup of (G, ).

We are required to prove is: * is associative in H and identity e € H.

That * is associative in H follows from the fact that * is associative in G. Since H is nonempty,
let acH=a *eH (by i)

S ac€Ha t€H=aa TeH by
>e€H(vaa'eH=>aa'€eG=>aa'=¢e, where e is the identity in G.)
= e is the identity in H.

Hence H itself is a group.
~ H is a subgroup of G.

Example: The set S of all ordered pairs (a, b) of real numbers for which a =/0 w.r.t the
operation x defined by (a, b) x (c, d) = (ac, bc + d) is non-abelian. Let H= {(1, b)|b € R} isa
subset of S. Show that H is a subgroup of (S, x).
Solution: Identity element in S is (1, 0). Clearly (1, 0) € H.
Inverse of (a, b) in Sis (1/a,-b/a) (" a =/0)
Inverse of (1, ¢) inSis (1, -c/1),i.e., (1, —¢)
Clearly (1,¢) EH = (1,¢) 1=(L —¢) € H.
Let (1, b) € H.
(L,b) % (1,9) "= (L, b)x (L —)
=(1lLbl-¢c)=(Lb—c)€EH( " b—cER)
S (Lb),(L,c)EH= (Lb)x(Lc) LeH . Hisa
subgroup of (S, x).
Note: (14,b)*x(1,c)=(1.1,b.1+c¢)
=(1,b+¢)

=(1, c +b)
=(1, ¢) x (1, b)

.. H is an abelian subgroup of the non-abelian group (S, %).

Theorem: If Hy and H2 are two subgroups of a group G, then H1 N H2 is also a subgroup of
G.

Proof: Let Hj and H2 be two subgroups of a group G.
Let e be the identity element in G.

S.e€HiandeeH2...e€H1N
Ho.

= H1 N H2=¢.

Letae HHNH2and b € H1 N Ho.
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S.a€e Hi,ae Hyandb € Hy, b € Ha.

Since Hip isasubgroup,a € Hyandb € H1 = ab_1 € Hj.
Similarly ab * € Ho.

ab_1 € H1 N Ha.

Thus we have, a € H1 N H2, b € H1 N H2 = ab * € H1 N Ho.
.. H1 N Haz is a subgroup of G.

Example: Let G be the group and Z={x € G| xy=yx for all y&G}. Prove that Z is a subgroup of
G.

Solution: Sincee € Gand ey = ye, forally € G. It follows that e € Z.
Therefore Z is non-empty.

Takeanya,b € Zandanyy € G. Then
(ab)y = a(by)
=a(yb), sinceb € Z, by =yb
=(ay)b
=(ya)b
=y(ab)

This show that ab € Z.
Letac Z=> ay=yaforally € G.

-1 -1_ -1 -1
= a “(ay)a "=a “(ya)a

-1 -1, _, -1 -1
= (a "a)(ya ") =(a “y)(aa )

-1, _,. -1 -1 -1

=>e(ya )=(a 'y)e=>a 'y=ay
This shows that a_* € Z.

Thus, whena, b € Z, we have ab € Z and atez
Therefore Z is a subgroup of G.
This subgroup is called the center of G.

Homomorphism

Homomorphism into: Let (G, %) and (G', -) be two groups and f be a mapping from G into
G. Iffor a, b € G, f(atb) = f(a)-f(b), then f is called homomorphism G into G .
Homomorphism onto: Let (G, %) and (G', -) be two groups and f be a mapping from G onto

G. If for a, b € G, f(axb) = f(a)-f(b), then f is called homomorphism G onto G
Also then G’ is said to be a homomorphic image of G. We write this as f(G) = G".

Isomorphism: Let (G, %) and (G', -) be two groups and f be a one-one mapping of G onto G

If for a, b € G, f(a x b) =f(a) - f(b), then f is said to be an isomorphism from G onto G.
Endomorphism: A homomorphism of a group G into itself is called an endomor-phism.
Monomorphism: A homomorphism into is one-one, then it is called an monomor-phism.
Epimorphism: If the homomorphism is onto, then it is called epimorphism.
Automorphism: An isomorphism of a group G into itself is called an automorphism.
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Example: Let G be the additive group of integers and G be the multlpllcatlve group. Then
mapping f: G — G given by f(x) = 2isa group homomorphlsm of G into G.

Solution: Sincex,y € G= x+y & Gand 2 X e G=22eaG.
SAx+y) =2 =25 Y =1(x) - f(y).
= fisa homomorphism of G into G.

Example: Let G be a group of positive real numbers under multiplication and G bea group of

all real numbers under addition. The mapping f : G — G,given by f(x) = log1o x. Show that f
IS an isomorphism.

Solution: Given f(x) = log1o X.

Leta,b € G = ab € G. Also, f(a), f(b) € G.

". f(ab) = log1o ab = log1p a + log1o b =f(a) + f(b).
> fis a homomorphism from G into G.

Let x1, x2 € G and f(x1) =f(x2)

Iog x =log x
1 10 2
N 10Iogmx1: 10Iogmx2
= X1 =X2

> fis one-one.

= f(10") = log1o(10") = y.

. Forevery € G', there exists 10° € G such that f(lOy) =y
> fis onto.

". f an isomorphism from G to G.

Example: If R is the group of real numbers under the addition and R is the group of positive

real numbers under the multiplication. Let f : R — R be defined by f(x) = e", then show that f
is an isomorphism.

Solution: Letf: R — R be defined by f(x) = e".

fis one-one: Let a, b €G and f(a) = f(b)
a_ b
>e =e
a_ b
>loge =loge
>aloge=bloge

>a=b
Thus f is one-one.
fis onto: If ¢ € R" then log c € Rand f(log ¢) = eIog ¢

Thus each element of R” has a pre-image in R under f and hence f is onto.

f is Homomorphism: f(a + b) = ea+b = ea.eb = f(a).f(b) Hence f is an isomorphism.

=C
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Example: Let G be a multiplicative group and f : G — G such that for a € G, f(a) = a_l.

Prove that f is one-one and onto. Also, prove that f is homomorphism if and only if G is
commutative.

Solution: f : G — G is a mapping such that f(a) = a_l, fora e G.
(). To prove that f is one-one.

Leta,beG..a |,b e Gandf(a),f(b) €G.
Now f(a) = f(b)

N a—l - b—l

= (a—l)—l = (b—l)—l
=>a=b

.. fis one-one.

(if). To prove that f is onto.
Leta€ G... a € G such that f(afl) = (afl)fl = a.

.. fis onto.
(iii). Suppose f is a homomorphism.

For a, € G, ab €G. Now f(ab) = f(a)f(b)

-1

>(ab) T=a b ' pagi=gipet

=> (b—la—l)—l = (a—lb—l)—l

= (a—l)—l(b—l)—1 = (b—1)—1(a—1)—1

> ab =ba

.. G is abelian.

(iv). Suppose G is abelian = ab=ba, V a, b € G.
Fora, b € G, f(ab) = (ab) *

= ph-19-1

=a-1pb-:
=f(a)f(b)

.. fis a homomorphism.
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Number Theory

Properties of Integers

Let us denote the set of natural numbers (also called positive integers)by N and the set of
integers by Z.

e, N={1,2,3..}andZ=¢..., -2 -1,0,1, 2...}.

The following simple rules associated with addition and multiplication of these inte-gers are
given below:

(a). Associative law for multiplication and addition

(@a+b)+c=a+(b+c)and (ab)c = a(bc), forall a, b, c € Z.

(b). Commutative law for multiplication and additiona+b=b +aand ab =ba, foralla, b €
Z.

(c). Distritbutive law a(b + ¢) =ab+acand (b + c)a=ba + ca, forall a, b, c € Z.
(d). Additive identity 0 and multiplicative identity 1

at0=0+a=aandal=1a=a,forallac Z
(e). Additive inverse of —a for any integer a

a+(—a)=(-a)+a=0.
Definition: Let a and b be any two integers. Then a is said to be greater than b ifa — b is
positive integer and it is denoted by a > b. a > b can also be denoted by b < a.

Basic Properties of Integers

Divisor: A non-zero integer a is said to be divisor or factor of an integer b if there exists an
integer g such that b = aqg.

If a is divisor of b, then we will write a/b (read as a is a divisor of b). If a is divisor of b, then
we say that b is divisible by a or a is a factor of b or b is multiple of a. Examples:

(@). 2/8,since 8 =2 x 4,

(b). —4/16, since 16 = (—4) x (—4).

(c). a/0 for all a € Z and a =0, because 0 = a.0.

Theorem: Let a, b, ¢ € Z, the set of integers. Then,

(i). If a/b and b =0, then |a| <|b].

(ii). 1f a/b and b/c, then a/c.

(iii). If a/b and a/c, then a/b + ¢ and a/b — .

(iv). If a/b, then for any integer m, a/bm.

(v). If a/b and a/c, then for any integers m and n, a/bm + cn.
(vi). If a/b and b/a then a = b.

(vii). Ifa/b and a/b + c, then a/c.

(viii). If a/b and m =0, then ma/mb.

Proof:

. We have a/lb = b = aqg, where q €Z.
Since b =0, therefore g =/0 and consequently |g| > 1.

Also, [g| =1 = |allq| > |al
= |b| > al.
. We have a/lb = b = aqi, where q1 €Z.
b/c = ¢ =bg2, where g2 € Z.
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C.c=bq2 =(aq1)g2 = a(q1g2) = aq, whereq =q1q2 € Z. = alc.
(iii). We have a/b = b = aq1, where q1 €Z.
alc = c=ag, where g2 € Z.
Nowb+c=aq1+ag2=a(q1+q2) =ag, whereq=q1+q2 € Z.
= alb +c.
Also, b —c=aq1 —ag2=a(q1 — ¢2) =aq, whereq=q1— g2 € Z.
= a/b — c.
M We have a/b = b =aq, where q €Z.
For any integer m, bm = (ag)m = a(gm) = aq, where a = gm €Z.
= a/bm.
@ We have a/b = b =aq1, where q1 € Z.
alc = c=ag, where g2 € Z.
Now bm + cn = (aq1)m + (ag2)n = a(qim + gz2n) = ag, where q = qim + g2n €2
= a/mb + cn.
@ We have a/b = b =aq1, where q1 €Z.
b/a = a =bgp, where g2 € Z.
. b =aq1 = (bg2)q1 = b(q291)
= b(1 — ¢2q1) =0
2q1=1=q2=q1=1orgz=q1=-1
S.a=bora=-bie,azxbh. (vii). Wehavea/b = b
= aqgi, where q1 € Z.
alb+c=b+c=aqp whereqz € Z
Now, ¢ = b — ag2 = aq1 — ag2=a(q1 — q2) =aq, where = q1 — g2 € Z.
= alc.

(viii). We have a/b = b = aq1, where q1 € Z.
Since m =0, mb = m(aq1) = ma(qi)

= ma/mb.

Greatest Common Divisor (GCD)
Common Divisor: A non-zero integer d is said to be a common divisor of integers a and b if
d/a and d/b.

Example:
(2). 3/—15and 3/21 = 3 is a common divisor of 15, 21.

(2). £1 is a common divisor of a, b, where a, b € Z.
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Greatest Common Divisor: A non-zero integer d is said to be a greatest common divisor
(gcd) of aand b if

(). d is a common divisor of a and b; and

(ii). every divisor of a and b is a divisor of d.

We write d = (a, b)=gcd of a, b.

Example: 2, 3 and 6 are common divisors of 18, 24.

Also 2/6 and 3/6. Therefore 6 = (18, 24).
Relatively Prime: Two integers a and b are said to be relatively prime if their greatest
common divisor is 1, i.e., gcd(a, b)=1.
Example: Since (15, 8) = 1, 15 and 8 are relatively prime.
Note:

(1). If &, b are relatively prime then a, b have no common divisors.

(i). a, b € Z are relatively prime iff there exists X, y € Z such that ax + by = 1.
Basic Properties of Greatest Common Divisors:
(2). If c/ab and gcd(a, ¢) = 1 then c/b.

Solution: We have c/ab = ab=cq1,q1 € Z.

(a, ¢) =1 = there exist x, y €Z such that
ax+cy=1.

ax+cy=1=b(ax+cy)=hb
> (ba)x +b(cy) =b = (cq1)x + b(cy) =b = c[gix + by] =b
> cq=h,whereq=qix+by € Z =c/b.

(2). If (@, b) =1and (a, ¢) =1, then (a, bc) = 1.
Solution: (a, b) = 1, there exist x1, y1 € Z such that

axy+by1 =1

= by1=1-ax (2)

(a, ¢) =1, there exist x2, y2 € Z such that
axg+by2=1

= cy2=1—ax2 (2)

From (1) and (2), we have
(by1)(cy2) = (1 — ax1)(1 — ax2)

= bey1y2=1—a(x1 +x2) + alexz = a(x1 +x2 —
axixz) + be(yiyz) = 1
= ax3 + bcys = 1, where x3 = X1 + X2 —ax1x2 and y3 = y1y2 are integers.

.. There exists x3, y3 € Z such that ax3 + bcys = 1.

(3). If (a, b) =d, then (ka, kb) = |k|d., k is any integer.

Solution: Since d = (a, b) = there exist x, y € Z such that
ax + by =d.

> k(ax) + k(by) = kd = (ka)x + (kb)y =kd
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.. (ka, kb) = kd = k(a, b)

). If (a, b) =d, then (%g, &) = 1.

Solution: Since (a, b) =d = there exist x, y € Z such that ax + by = d.
=(ax+by)/d=1

= (a/d)x + (b/d)y = 1
Since d is a divisor of both a and b, a/d and b/d are both integers.
Hence (a/d,b/d) = 1.

Division Theorem (or Algorithm)

Given integers a and d are any two integers with b > 0, there exist a unique pair of integers q
and r such that a = dg + r, 0 <r» < b. The integer‘s q and r are called the quotient and the
remainder respectively. Moreover, r = 0 if, and only if, b|a.

Proof:

Consider the set, S, of all numbers of the form a+nd, where n is an integer.

S={a-nd:nisan integer}

S contains at least one nonnegative integer, because there is an integer, n, that ensures a-nd >
0, namely

n = -[a] d makes a-nd = a+|a| d? > a+|a| > 0.

Now, by the well-ordering principle, there is a least nonnegative element of S, which we will
call r, where r=a-nd for some n. Let g = (a-r)/d = (a-(a-nd))/d = n. To show that r < |d|,
suppose to the contrary that r > |d|. In that case, either r-|d|=a-md, where m=n+1 (if d is
positive) or m=n-1 (if d is negative), and so r-|d| is an element of S that is nonnegative and
smaller than r, a contradiction. Thus r < [d|.

To show uniqueness, suppose there exist q,r,q',r' with 0 <r,r' <|d|

such that a=qd + rand a=q'd +r'".

Subtracting these equations gives d(q'-q) = r'-r, so d|r'-r. Since 0 <r,r' <|d|, the difference r'-r
must also be smaller than d. Since d is a divisor of this difference, it follows that the

difference r'-r must be zero, i.e. r'=r, and so q'=q.

Example: Ifa=16,b=5then16=3x5+1;0<1<5.
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Euclidean Algorithm for finding the GCD

An efficient method for finding the greatest common divisor of two integers based on the
quotient and remainder technique is called the Euclidean algorithm. The following lemma
provides the key to this algorithm.

Lemma: If a=Dbq+ r, where a, b, q and r are integers, then gcd(a, b)=gcd(b, r).
Statement: When a and b are any two integers (a > b), if r1 is the remainder when a is
divided by b, r2 is the remainder when b is divided by r1, r3 is the remainder when rq is

divided by r2 and so on and if rk+1 = 0, then the last non-zero remainder r is the gcd(a, b).
Proof:

By the unique division principle, a divided by b gives quotient g and remainder r,

such that a = bg+r, with 0 <r <|b|.

Consider now, a sequence of divisions, beginning with a divided by b giving quotient g1 and
remainder bz, then b divided by b giving quotient g2 and remainder by, etc.

asz1+b11
b=b1g2+by,
b1=boqs+bs,

bn-2:bn-lq ntDn,
bn-l:ann+l

In this sequence of divisions, 0 < bz < |b|, 0 < bz < |by|, etc., SO we have the sequence
|b| > [b1| > |b2| > ... > 0. Since each b is strictly smaller than the one before it, eventually one
of them will be 0. We will let b, be the last non-zero element of this sequence.

From the last equation, we see by | bn-1, and then from this fact and the equation before it, we
see that by | bn-2, and from the one before that, we see that by, | bn-s, etc. Following the chain
backwards, it follows that by | b, and b, | a. So we see that b, is a common divisor of a and b.

To see that by is the greatest common divisor of a and b, consider, d, an arbitrary common
divisor of a and b. From the first equation, a-bq:=b1, we see d|b1, and from the second,
equation, b-b1gz=hy, we see d|b2, etc. Following the chain to the bottom, we see that d|by.
Since an arbitrary common divisor of a and b divides by, we see that by is the greatest
common divisor of a and b.

Example: Find the gcd of 42823 and 64009.
Solution: By Euclid Algorithm for 42823 and 6409, we have
42823= 6.6409+ 4369, r1= 4369,
6409=1.4369+2040, r2= 2040,
4369= 2.2040+289, r3 = 289,
2040=7.289+ 17, r4 = 17,
289=17.17+ 0,
r5=0

.. r4 =17 is the last non-zero remainder. .".d = (42823, 6409) = 17.
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Example: Find the gcd of 826, 1890.

Solution: By Euclid Algorithm for 826 and 1890, we have
1890= 2.826+ 238,r1= 238
826=3.238+ 112,r2= 112
238=2.112+ 14,r3 =14
112=8.14+0,r4=0

.. r3 =14 is the last non-zero remainder. ..d = (826, 1890) = 14.
****Example: Find the gcd of 615 and 1080, and find the integers x and y such that gcd(615,

1080) = 615x + 1080y.
Solution: By Euclid Algorithm for 615 and 1080, we have

1080 = 1.615 + 465, r1 =465 — — — — — (1)

615=1.465+ 150, r2=150 — — — — — (2)
465=3.150+15,r3=15————— — (3)
150=10.15+0,r4=0-—-—-—-—-—— (4)

.. r3=15is the last non-zero remainder.

... d = (615, 1080) = 15. Now, we find x and y such that

615x + 1080y = 15.

To find x and y, we begin with last non-zero remainder as follows.
d =15 =465 + (—3).150; using (3)

=465 + (—3){615 + (—1)465}; using (2)
=(—3).615 + (4).465
=(—3).615 + 4{1080 + (—1).615}; using (1)
=(—7).615 + (4).1080
=615x + 1080y
Thus gcd(615, 1080) = 15 provided 15 = 615x + 1080y, where x = =7 and y = 4.
Example: Find the gcd of 427 and 616 and express it in the form 427x + 616y.
Solution: By Euclid Algorithm for 427 and 616, we have
616=1.427+189,r1 = 189. ...... (1)

427=2.189+49,r12 = 49. ......... )
189=3.49+ 42, r3=42. .......... (3)
49= 142+ 7,04 =T, ccovvve.. (4)
42=6.7+0,,5=0..ovvvverrerenns (5)

;. 5 =7 is the last non-zero remainder.

.. d=(427,616) = 7. Now, we find x and y such that
427x + 616y = 7.
To find x and y, we begin with last non-zero remainder as follows.
d=7=49+(-1).42; using (4)
=49 + (—1){189 + (—3).49}; using (3)
=4.49 — 189
=4.{427 + (—2).189;} — 189; using (2)
=4.427 + (—8).189 — 189
=4.427 + (—9).189
=4.427 + (—9){616 + (—1)427}; using (1)
=4.427 + (—9).616 + 9.427
=13.427 + (—9).616
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Thus gcd(427, 616) = 7 provided 7 = 427x + 616y, where x = 13 and y = —9.

Example: For any positive integer n, prove that the integers 8n + 3 and 5n + 2 are relatively
prime.

Solution: If n = 1, then gcd(8n + 3, 5n + 2)=gcd(11, 7) = 1.

If n > 2, then we have 8n + 3 > 5n + 2, so we may write

8n+3=1(5n+2)+3n+1, 0<3n+1<5n+2
5n+2=103n+1)+2n+1, 0<2n+1<3n+1
3n+1=1(2n+1)+n0<n<2n+1

2n+1=2.n+1, 0<1<n

n=nl1+0.

Since the last non-zero remainder is 1, gcd(8n + 3,5n + 2) = 1 for all n > 1.
Therefore the given integers 8n + 3 and 5n + 2 are relatively prime.
Example: If (a, b) =1, then (a + b, a — b) is either 1 or 2.
Solution: Let (a+ b, a — b)=d =>d|a+ b, dla — b.

Thena+b=kid....... (1)

Solving (1) and (2), we have
2a = (k1 + k2)d and 2b = (k1 — A2)d

.. d divides 2a and 2b

.. d <gcd(2a, 2b) = 2 ged(a, b) =2, since ged(a, b)=1..d=1or2.
Then 2a + b =kid.......... (1)

and a + 2b =kod............ (2)

3a = (2k1 — k2)d and 3b = (2k2 — k1)d
.. d divides 3a and 3b

.. d <gcd(3a, 3b) = 3 ged(a, b) =3, since ged(a, b)=1..d=1o0r2or3.

But d cannot be 2, since 2a + b and a + 2b are not both even [when a is even and b is odd, 2a
+ b isodd and a + 2b is even; when a is odd and b is even, 2a + b is even and a + 2b is odd;
when both a and b are odd 2a + b and a + 2b are odd.] Hence d = (2a + b, a + 2b) is 1 or 3.

Least Common Multiple (LCM)

Let a and b be two non-zero integers. A positive integer m is said to be a least common
multiple (Icm) of a and b if
(i) mis a common multiple of a and b i.e., a/m and b/m,
and
(i) ¢ isa common multiple of a and b, c is also a multiple of m
i.e., if a/c and b/c, then m/c.

In other words, if a and b are positive integers, then the smallest positive integer that is
divisible by both a and b is called the least common multiple of a and b and is denoted by
Icm(a, b).

Note: If either or both of a and b are negative then lcm(a, b) is always positive.

Example: lcm(5, -10)=10, lcm(16, 20)=80.
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Prime Numbers

Definition: An integer n is called prime if n > 1 and if the only positive divisors of n are 1
and n. If n > 1 and if n is not prime, then n is called composite.

Examples: The prime numbers less than 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97.

Theorem: Every integer n > 1 is either a prime number or a product of prime numbers.

Proof: We use induction on n. The theorem is clearly true for n = 2. Assume it is true for
every integer < n. Then if n is not prime it has a positive divisor d /1, d =/n. Hence n = cd,
where ¢ =/n. But both ¢ and d are < n and > 1 so each of c, d is a product of prime numbers,
hence so is n.

Fundamental Theorem of Arithmetic

Theorem: Every integer n > 1 can be expressed as a product of prime factors in
only one way, a part from the order of the factor.

Proof:

There are two things to be proved. Both parts of the proof will use he Well-ordering

Principle for the set of natural numbers.

(1) We first prove that every a > 1 can be written as a product of prime factors. (This

includes the possibility of there being only one factor in case a is prime.)

Suppose bwoc that there exists a integer a > 1 such that a cannot be written as a product of
primes.

By the Well-ordering Principle, there is a smallest such a.

Then by assumption a is not prime so a=hbc where 1 <b,c<a.

So b and ¢ can be written as products of prime factors (since a is the smallest positive

integer than cannot be.)

But since a = bc, this makes a a product of prime factors, a contradiction.

(@ Now suppose bwoc that there exists an integer a > 1 that has two different prime
factorizations, say a = pl --- ps = gl --- gt , where the pi and gj are all primes. (We allow
repetitions among the pi and gj . That way, we don‘t have to use exponents.)
Thenplla=ql---qt. Since pl is prime, by the Lemma above, p1| gj for some j .

Since qj is prime and p1 > 1, this means that p1 =qj .

For convenience, we may renumber the qj so that p1 =q1.

We can now cancel p1 from both sides of the equation above to get p2 --- ps=q2 --- qt . But
p2 --- ps < a and by assumption a is the smallest positive integer with a non—unique prime
factorization.

It follows that s = t and that p2,...,ps are the same as g2,...,qt , except possibly in a different
order.

But since pl = gl as well, this is a contradition to the assumption that these were two
different factorizations.

Thus there cannot exist such an integer a with two different factorizations

Example: Find the prime factorisation of 81, 100 and 289. Solution: 81 =3 x 3 x 3 x 3 = 34
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100=2 x 2><5><5 22><52

280=17x17= 17
Theorem: Let m = p.° p % pHandn=p 1b1p %2 o % Then

k ) k
ged(m, n) = p1mm(a1’ 17 x p2 m'“(?&) X% p min(ay bj,)

Il pmin(aib) ‘\where min(a, b) represents the minimum of the two numbers a and b.

lem(m, ) = plmax(al b 1) max(a2 b2) xp max(al< bk)

I p;max(ai bi) where max(a,b) represents the maximum of the two numbers a and b.
Theorem: If a and b are two positive integers, then gcd(a, b).lcm(a, b) = ab.
Proof: Let prime factorisation of a and b be

m=p,! 7 .p*andn=p°1p°5..p°

Then ged(a, b) = plmin(al,bl) y p2min(a2,b2) < x pkmin(ak,bk)and
|Cm(m1 n) = plmax(al,bl) " pzmax(az,bz) % x pkmax(ak,bk)

We observe that if min(aj, bj) is ai(or bj) then max(ai, bi) is bi(or aj), i =1, 2.., n.

Hence gcd(a, b).lcm(a, b)

___min(aq bq) min(@g bo) min(a) b,) max( a,b) maX(Zaz,bz) maX(kak,b)

—pl X p2 111
[min(a ,b)+max(a ,b)] [min(a ,b)+max(a ,b)] [min(a ,b)+max(a,b )]
:p]_ 11 t1.p2 2 2 2 2 pk k kk
(a+b) (a+b) (a+h)
k « «

x ... x pk

—pl torp2 p S
=(p: ™ p22 .k’ )(p1 'p22.p )
=ab.

Example: Use prime factorisation to find the greatest common divisor of 18 and 30.
Solution: Prime factorisation of 18 and 30 are
18=2"x 3% x5%and 30 = 2* x 3t x 5%
ged(s, 30)=2min(1,1) x amin(2,1) x smin(0,1)
1.,1_ .0

=2"x3 x§

=2x3x1

=6.

Example: Use prime factorisation to find the least common multiple of 119 and 544.
Solution: Prime factorisation of 119 and 544 are

119=2%x 7t x 17 and 544 = 2° x 70 x 17,

|Cm(119 544) 2max(0,5) X 7 max(1,0) X 17m§x(1 1)
=2 x 7t x 17*
=32 x 7 x 17
~3808.

Example: Using prime factorisation, find the gcd and Icm of
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(). (231, 1575) (ii). (337500, 21600). Verify also gcd(m, n). lcm(m, n) = mn.

Example: Prove that logs 5 is irrational number.

Solution: If possible, let logs 5 is rational number.

= log3z 5 = u/v, where u and v are positive integers and prime to each other.

- 3W=5

ie., 3'=5'= n, say.

This means that the integer n > 1 is expressed as a product (or power) of prime numbers (or a

prime number) in two ways.
This contradicts the fundamental theorem arithmetic.

.. logz 5 is irrational number.

Example: Prove thatV 5 is irrational number.

Solution: If possible, letV 5 is rational number.

=5 = u/v, where u and v are positive integers and prime to each other.
=Su= 5\/2 .............................................. (1)

=wis divisible by 5

=uisdivisible by 5i.e., u=5m........ (2)

=~ From (1), we have 5vz= 25m?or vz = 5m?

i.e., vvand hence v is divisible by 5

e, v=>5n..... 3)

From (2) and (3), we see that u and v have a common factor 5, which contradicts the
assumption.

=5 is irrational number.

Testing of Prime Numbers

Theorem: If n > 1 is a composite integer, then there exists a prime number p such

that p/n and p <\n.

Proof: Since n > 1 is a composite integer, n can be expressed as n = ab, where

1<a<b<n Thena<\n.

If a >\n, then b > a >n.

~n=ab>\n\n=n, ie. n>n, which is a contradiction.

Thus n has a positive divisor (= a) not exceeding V.

a > 1, is either prime or by the Fundamental theorem of arithmetic, has a primefactor. In ither
ase, n has a prime factor<vn.

Algorithm to test whether an integer n > 1 is prime:

Step 1: Verify whether n is 2. If n is 2, then n is prime. If not goto step 2.

Step 2: Verify whether 2 divides n. If 2 divides n, then n is not a prime. If 2 does not divides
n, then goto step (3).

Step 3: Find all odd primes p <n.If there is no such odd prime, then n is prime otherwise,
goto step (4).

Step 4: Verify whether p divides n, where p is a prime obtained in step (3). If p divides n,
then n is not a prime. If p does not divide n for any odd prime p obtained in step (3),
then n is prime.
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Example: Determine whether the integer 113 is prime or not.
Solution: Note that 2 does not divide 113. We now find all odd primes p such that p2 <113.

These primes are 3, 5 and 7, since 7° < 113 < 112,
None of these primes divide 113.
Hence, 113 is a prime.

Example: Determine whether the integer 287 is prime or not.
Solution: Note that 2 does not divide 287. We now find all odd primes p such that p2 <287.

These primes are 3, 5, 7, 11 and 13, since 132 <287 < 17%,
7 divides 287.
Hence, 287 is a composite integer.

Modular Arithmetic

Congruence Relation

If a and b are integers and m is positive integer, then a is said to be congruent to b modulo m,
if m divides a — b or a — b is multiple of m. This is denoted as

a= b(mod m)

m is called the modulus of the congruence, b is called the residue of a(mod m). If a is not
congruent to b modulo m, then it is denoted by a/=b(mod m).

Example:

(). 89 = 25(mod 4), since 89-25=64 is divisible by 4. Consequently 25 is the residue of
89(mod 4) and 4 is the modulus of the congruent.

(). 153 = —7(mod 8), since 153-(-7)=160 is divisible by 8. Thus -7 is the residue of
153(mod 8) and 8 is the modulus of the congruent.

(). 24 #3(mod 5), since 24-3=21 is not divisible by 5. Thus 24 and 3 are incon-gruent
modulo 5

Note: If a = b(mod m) < a — b =mk, for some integer k

< a=b + mk, for some integer k.

Properties of Congruence

Property 1: The relation ICongruence modulo ml isan equivalence relation. i.e., forall
integers a, b and c, the relationis

(i) Reflexive: For any integer a, we have a = a(mod m)
(it) Symmetric: If a = b(mod m), then b = a(mod m)

(iii)  Transitive: If a = b(mod m) and b = ¢(mod m), then a = ¢(mod
m).

Proof: (i). Let a be any integer. Then @ — a = 0 is divisible by any fixed positive integer m.
Thus a = a(mod m).
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.". The congruence relation is reflexive.
(ii). Given a = b(mod m)

> a—bisdivisible bym = —(a—Db) is

divisible by m = b — a is divisible by

m

I.e., b = a(mod m).

Hence the congruence relation is symmetric.
(iii). Given a = h(mod m) and b = ¢(mod m)

= a — b is divisible of m and » — ¢ is divisible by m. Hence (a —
b) + (b — ¢) =a — cis divisible by m

I.e., a = ¢(mod m)

= The congruence relation is transitive.

Hence, the congruence relation is an equivalence relation.
Property 2: If « = b(mod m) and c is any integer, then
(1). a ¢ =b+c(modm)

(ii). ac = bc(mod m).

Proof:

() Since a =b(mod m) = a — bis divisible by m.
Now (a+c) — (b xc) =a — bisdivisible by m.

S.aftc=b+c(modm).

). Since a =b(mod m) = a — b is divisible by m.
Now, (@ — b)C = ac — bc is also divisible by m.

.. ac = be(mod m).
Note: The converse of property (2) (ii) is not true always.
Property 3: If ac = be(mod m), then a = b(mod m) only if gcd(c,m) = 1. In fact, if ¢ is an

integer which divides m, and if ac = be¢(mod m), then a = b mod[ L]
ged(c, m)

Proof: Since ac = be(mod m) = ac — bc is divisible by m.

i.e., ac — bc = pm, where p is an integer.

= a-b=p(")
C

". a=b[ mod (_m )] , provided that m is an integer.
c c
Since c¢ divides m, gcd(c, m) =c.

My

ged(c, m)

But, if gcd(c, m) = 1, then a = h(mod m).

Hence, a = b mod [

Property 4: If a, b, ¢, d are integers and m is a positive integer such that « = h(mod m) and ¢
= d(mod m), then

(1). a+c=b+xd(mod m)

(i1). ac = bd(mod m)

(). a'= bn(mod m), where n is a positive integer.
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Proof: (i). Since a = b(mod m) = a — b is divisible by m.

Also ¢ = d(mod m) = ¢ — d is divisible by m.

. (a—Db)x(c—d)isdivisible bym. i.e, (axc) —
(b = d) is divisible by m. i.e., a = ¢ = b = d(mod
m).

@M. Since a = b(mod m) = a — b is divisible bym.

.. (a—b)cis also divisible by m.

.. (c — d)bis also divisible by m.

.(@a—Db)c+ (c—d)b=ac — bdisdivisible by m. i.e., ac — bd is divisible by m.

I.e., ac =bd(mod m).......ccoervieninnne 1)

(). In(1), putc =aand d=h. Then, we get

a=b(modm). ....c...... (2

Also a =b(mod m)........ ...... (3

Using the property (ii) in equations (2) and (3), we have a3 = b3(mod
m)

Proceeding the above process we get
n n f .. .
a =b (mod m), where n is a positive integer.

Fermat’s Theorem
If p is a prime and (a, p) = 1 then & — 1 is divisible by p i.e., @ =1 (mod p).

Proof

We offer several proofs using different techniques to prove the statement o =a (mod p)_
If ged (a, p) = 1, then we can cancel a factor of from both sides and retrieve the first version
of the theorem.

Proof by Induction

The most straightforward way to prove this theorem is by by applying the induction principle. We
fix P as a prime number. The base case, 1 =1 (mod p , IS obviously true. Suppose the
statement @ = a (mod p) s trye. Then, by the binomial theorem,

(a+1)" = a” + (};)QPI—F (g)ap2+---+ (pfl)cwl.

p)
Note that P divides into any binomial coefficient of the form (k for l <k <p—1 This
p!

Py _
kN p = k)
follows by the definition of the binomial coefficient as (k ki(p — k)t

then P divides the numerator, but not the denominator.

; since P is prime,

115



Taken ™MOd P all of the middle terms disappear, and we end up
with (@ + 1)” = @’ + 1 (mod p), since we also know that @” = a (mod P),
then (@ +1)" = a + 1 (mod p) as desired.

Example: Using Fermat‘s theorem, compute the values of
(i) 3°%(mod 5),
.. 302
(i)  37"(mod 7) and
i) 3°%%(mod 12).

Solution: By Fermat* s theorem, 5 is a prime number and 5 does not divide 3, we have

35-1=1 (mod5)

3'=1 (mod5)
(34)s= 1" (mod 5)

3300= 1 (mod 5)

3302= =9 (mod 5)

3302=4 (mod 5)............ (1)
Similarly, 7 is a prime number and 7 does not divide 3, we have
6 _
3"’ =1(mod7)

3% =1 (mod 7)

339 = 1 (mod 7)

33922 32- 9 (mod 7)

332 =2 (mod 7)........... )

and 11 is a prime number and 11 does not divide 3, we have
3% =1 (mod 1)

329 = 13% (mod 11)
300 _
37 =1(mod 11)
3392 =329 (mod 11)........... 3)
. . 201
Example: Using Fermat‘s theorem, find 3™~ (mod 11).
Example: Using Fermat‘s theorem, prove that 413382 _ 16 (mod 13331). Also, give an

example to show that the Fermat theorem is true for a composite integer. Solution:
(i). Since 13331 is a prime number and 13331 does not divide 4.
By Fermat‘s theorem, we have

41333171 _ 1 (mod 13, 331)
413330 — 1 (mod 13, 331)
413331 = 4 (mod 13, 331)
413332 = 16 (mod 13, 331)

(it). Since 11 is prime and 11 does not divide 2.

116



By Fermat‘s theorem, we have

11-1

2 =1 (mod 11)

. 1
e, 2 0

10,34
27)
5340 _

Also,

=1 (mod 11)
=13 (mod 1)

1 (mod 11)............ (1)

2°=1 (mod 31)

2% = 1°® (mod 31)

2340 —

1 (mod 31)............ (2)

From (1) and (2), we get

2340 _ 1 s divisible by 11 x 31 = 341, since ged(L1, 31) = 1.
340

ie., 2

Thus, even though 341 is not prime, Fermat theorem is satisfied.

=1 (mod 341).

Euler’s totient Function:

Euler's totient

function counts the positive integers up to a given integer n that are
relatively prime to n. It is written using the Greek letter phi as ¢(n), and may also be called
Euler's phi function. It can be defined more formally as the number of integers k in the range
1 <k <n for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this

form are sometimes referred to as totatives of n.
Computing Euler’s totient function:

sw=nl (-]

P

w2 1)

where the product is over the distinct prime numbers dividing

Example: Find ¢(21), ¢(35), ¢(240)

Solution:

#(21) = (3 % 7) .
=21(1-)(1=")
3 7
=12

p(39) =900
=35(1-)(1=")
5 7
=24

#(240) = ¢(15 x 16)

=¢(3%5x 24)

=240 (1 - Ha - Ha-h
3 5 2

=64
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Euler’s Theorem: If a and n > 0 are integers such that (a, n) = 1 then a¢(n) = 1(mod n).
Proof:

Consider the elements Iy, I'o,..., T 40y of (Z/n) the congruence classes of integers that

are relatively prime to n.
For ae(Z/n) the claim is that multiplication by a is a permutation of this set; that is,

the set { Aly, @lp,..., ATy } equals (Z/n). The claim is true because multiplication by a is a

function from the finite set (Z/n) to itself that has an inverse, namely multiplication by 1/a (mod n)
Now, given the claim, consider the product of all the elements of (Z/n), on one hand, it

is I11;,...T4(n). Onthe other hand, itis afy al,...ar, ). So these products are congruent
mod n
rl r2 .o .r¢(n)E arl ar2 oo .ar¢(n)

rl r2 ...r¢(n) = a¢(n) rl rz...r¢(n)

1=g/™
where, cancellation of the r; is allowed because they all have multiplicative inverses(mod n)

Example: Find the remainder 292°2 when divided by 13.

Solution: We first note that (29,13)=1.
Hence we can apply Euler's Theorem to get that 2943 =1(mod13).
Since 13 is prime, it follows that ¢(13)=12, hence 29*?=1(mod13).
We can now apply the division algorithm between 202 and 12 as follows:
202=12(16)+10
Hence it follows that 29%02=(291%)%.2910=(1)%.291°=291%(mod13).
Also we note that 29 can be reduced to 3 (mod 13), and hence:
2910=310=59049=3(mod13)?
Hence when 292%2 is divided by 13, the remainder leftover is 3.

Example: Find the remainder of 99%%9%% when divided by 23.
Solution: Once again we note that (99,23)=1, hence it follows that 99423 =1(mod23).
Once again, since 23 is prime, it goes that ¢(23)=22, and more
appropriately 9922=1(mod23).
We will now use the division algorithm between 999999 and 22 to get that:
999999=22(45454)+11
Hence it follows that
0Q999999-(9Q22)45454.9911=145454.9911=711=1977326743=22(mod23).
Hence the remainder of 99%°%%° when divided by 23 is 22.
Note that we can solve the final congruence a little differently as:
9911=71=(72)°.7=(49)°-7=3%.7=1701=22(mod23).
There are many ways to evaluate these sort of congruences, some easier than others.
Example: What is the remainder when 138 is divided by 19?
Solution: If y* @ is divided by z, the remainder will always be 1; if y, z are co-prime
In this case the Euler number of 19 is 18
(The Euler number of a prime number is always 1 less than the number).
As 13 and 19 are co-prime to each other, the remainder will be 1.
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Example: Now, let us solve the question given at the beginning of the article using the
concept of Euler Number: What is the remainder of 192290092/237
Solution: The Euler Number of the divisor i.e. 23 is 22, where 19 and 23 are co-prime.

Hence, the remainder will be 1 for any power which is of the form of 220000.
The given power is 2200002.
Dividing that power by 22, the remaining power will be 2.
Your job remains to find the remainder of 192%/23.
As you know the square of 19, just divide 361 by 23 and get the remainder as 16.

Example: Find the last digit of 55°.
Sol: We first note that finding the last digit of 55° can be obtained by reducing 55° (mod 10),
that is evaluating 55°(mod10).

We note that (10, 55) =5, and hence this pair is not relatively prime,

however, we know that 55 has a prime power decomposition of

55=5x 11. (11, 10) = 1,

hence it follows that 1179 =1(mod10).

We note that ¢(10)=4. Hence 11*=1(mod10), and more appropriately:

555=55.115=55.114.11=5%2(1)*11=34375=5(mod 10)

Hence the last digit of 55° is 5.

Example: Find the last two digits of 33334444,

Sol:
We first note that finding the last two digits of 3333**4 can be obtained by reducing
3333%44 (mod 100).
Since (3333, 100) = 1, we can apply this theorem.
We first calculate that ¢(100)=¢(22)¢(5%)=(2)(5)(4)=40.
Hence it follows from Euler's theorem that 3333%°=1(mod100).
Now let's apply the division algorithm on 4444 and 40 as follows:

4444=40(111)+4

Hence it follows that:
3333%44=(333340)111.3333%=(1)11-3333%(mod 100)=33=1185921=21(mod 100)
Hence the last two digits of 3333*44 are 2 and 1.
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Previous guestions

. @) Prove that a group consisting of three elements is an abelian group?

b) Prove that G={-1,1,i,-i} is an abelian group under multiplication?

.a) Let G={-1,0,1} . Verify that G forms an abelian group under addition?

b) Prove that the Cancellation laws holds good in a group G.?

. Prove that the order of a*is same as the order of a.?
. a) Explain in brief about fermats theorem?

b) Explain in brief about Division theorem?
c¢) Explain in brief about GCD with example?

. Explain in brief about Euler's theorem with examples?

. Explain in brief about Principle of Mathematical Induction with examples?

. Define Prime number? Explain in brief about the procedure for testing of prime numbers?
. Prove that the sum of two odd integers is an even integer?

. State Division algorithm and apply it for a dividend of 170 and divisor of 11.

. Using Fermat's theorem, find 32! mod 11.

. Use Euler’s theorem to find a number between 0 and 9 such that a is congruent to 72 (mod 10)
. Find the integers x such that i) 5x=4 (mod 3) ii) 7x=6 (mod 5) iii) 9x=8 (mod 7)

. Determine GCD (1970, 1066) using Euclidean algorithm.

. If a=1820 and b=231, find GCD (a, b). Express GCD as a linear combination of a and b.

. Find 117 mod 13 using modular arithmetic.

Multiple choice guestions
If alb and b|c, then a|c.

a) True b) False
Answer: a
GCD(a,b) is the same as GCD(Jal,|b|).
a) True b) False
Answer: a
Calculate the GCD 0f 1160718174 and 316258250 using Euclidean algorithm.
a) 882 b) 770 c) 1078 d) 1225
Answer: c

Calculate the GCD of 102947526 and 239821932 using Euclidean algorithm.
a)ll b)12 c)8 d)6
Answer: d

Calculate the GCD of 8376238 and 1921023 using Euclidean algorithm.
a)13 b)12 c)17 d)7
Answer: a

What is 11 mod 7 and -11 mod 7?
a)4and5 b) 4 and 4 c)5and 3 d) 4 and -4
Answer: d

Which of the following is a valid property for concurrency?
a) a = b (mod n) if n|(a-b) b) a =b (mod n) implies b = a (mod n)
c) a=b (mod n) and b = ¢ (mod n) implies a = ¢ (mod n)
d) All of the mentioned

Answer: d

[(a mod n) + (b mod n)] mod n = (a+b) mod n
a) True b) False

[(@a mod n) — (b mod n)] mod n=(b-a) modn
a) True b) False
Answer:b
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10. 117 mod 13 =
a) 3b)7¢c5 d 15

Answer: d

11. The multiplicative Inverse of 1234 mod 4321 is
a) 3239 b) 3213 c) 3242 d) Does not exist
Answer: a

12. The multiplicative Inverse of 550 mod 1769 is
a) 434 b) 224 c) 550 d) Does not exist
Answer: a

13. The multiplicative Inverse of 24140 mod 40902 is
a) 2355 b) 5343 c) 3534 d) Does not exist
Answer: d

14. GCD(a,b) = GCD(b,a mod b)
a) True b) False
Answer: a

15. Define an equivalence relation R on the positive integers A= {2, 3,4, ...,20}bymRn
if the largest prime divisor of m is the same as the largest prime divisor of n. The number
of equivalence classes of R is

@8 (010 (c)9 (d)11(e)7
Ans:a

16. The set of all nth roots of unity under multiplication of complex numbers form a/an
A.semi group with identity = B.commutative semigroups with identity
C.group D.abelian group
Option: D

17. Which of the following statements is FALSE ?
A.The set of rational numbers is an abelian group under addition
B. The set of rational integers is an abelian group under addition
C. The set of rational numbers form an abelian group under multiplication
D.None of these
Option: D

18.Inthe group G = {2, 4, 6, 8) under multiplication modulo 10, the identity element is
A6 B8 C4 D2

Option: A
19. Match the following
A. Groups I. Associativity
B. Semi groups I1. Identity
C. Monoids I11. Commutative

D. Abelian Groups 1V Left inverse
A. ABCD BABCDC.ABCDD.ABCD
AVAR I | ] 11 T AV | T 1 I A AV I v
Option: A
20. Let (Z,*) be an algebraic structure, where Z is the set of integers and the operation * is
defined by n*m = maximum(n,m). Which of the following statements is TRUE for (Z,*)?
A.(Z, *) isamonoid B.(Z, *) isan abelian group C.(Z, *)isagroup  D.None
Option: D
21. Some group (G,0) is known to be abelian. Then which of the following is TRUE for G ?
Ag=glforeverygeG B.g=g?foreveryg € G
C.(g o h) 2=g%0 h? for every g,h € G D.G is of finiteorder
Option: C
22. If the binary operation * is deined on a set of ordered pairs of real numbers as (a, b)*(c, d)
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= (ad + b, -1 b)-2 c¢)-3 d)-4Answer:b

bd) and 25. The integer 561 is a Carmichael number.
is aT
associat r
ive, u
then (1, e
2) > (3,
5) * (3, b
4) )
equals
A.(74,4 F
0) B.(32,40) C.(23,11) 2aD.(7,11)
Option: A |
23. The linear combination of gcd(252, S
198) = 18 is e
a) 252*4 — 198*5 b) 252*5 —
198*4 C) 252*5 — A
198*2 d) 252*4 — n
198*4 S
Answer:a w
24. T €
h r
a

26. The linear combination of gcd(117,
213) = 3 can be written as a)
11*213 + (-20)*117 b)
10*213 + (-20)*117
c) 11*117 + (-20)*213 d) 20%213 + (-25)*117
Answer:a
27. The inverse of 7 modulo 26 is
a) 12 b) 14 c) 15 d) 20
Answer:c
28. The inverse of 19 modulo 141 is
a) 50 b) 51 c) 54 d) 52
Answer:d
29. The value of 52°% mod 7 is
a) 3 b) 4 c) 8 d) 9 Answer:a
30. The solution of the linear congruence 4x = 5(mod 9) is
a) 6(mod 9) b)8(mod9) «c)
9(mod 9) d) 10(mod 9)
Answer:b
31. The linear combination of gcd(10
,11) = 1 can be written as a) (-
7 1)*10 + 1*11 b) (-
2)*10 + 2*11
i c) 1*10 + (-1)*11 d) (-1)*10 + 2*11
Answer:a

w -~ O O »v =00 S5

O_CQ_OB
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UNIT V
Graph Theory

There are two different sequential representations of a graph. They are

« Adjacency Matrix representation
« Path Matrix representation

Adjacency Matrix Representation

Suppose G is a simple directed graph with m nodes, and suppose the nodes of G have been
ordered and are called v1, v2, ..., vm. Then the adjacency matrix A = (aij) of the graph G is the
m X m matrix defined as follows:

1 if vi is adjacent to Vj, that is, if there is an edge (Vi, V))
aij =0 otherwise

Suppose G is an undirected graph. Then the adjacency matrix A of G will be a
symmetric matrix, i.e., one in which aij = aji; for every i and j.

Drawbacks
12. It may be difficult to insert and delete nodes in G.

13. If the number of edges is 0(m) or O(m log2 m), then the matrix A will be sparse, hence
a great deal of space will be wasted.

Path Matrix Represenation

Let G be a simple directed graph with m nodes, v1,v2, . .. ,vm. The path matrix of G is
the m-square matrix P = (pij) defined as follows:

1 if there is a path from Vi to Vj
Pij =0 otherwise

Graphs and Multigraphs
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A graph G consists of two things:

e 10 20

f efensehts called nodes (or points or vertices)

: b
2.AsetE c() :tledges such that each edge e in E is identilfi)ed with a unique
a

(unordered) pair [u, v] of nodesiiah demotedtbylec-Cuayh
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Sometimes we indicate the parts of a graph by writing G = (V, E).

Suppose e = [u, v]. Then the nodes u and v are called the endpoints of e, and u and v are said
to be adjacent nodes or neighbors. The degree of a node u, written deg(u), is the number of
edges containing u. If deg(u) = 0 — that is, if u does not belong to any edge—then u is called
an isolated node.

Path and Cycle

A path P of length n from a node u to a node v is defined as a sequence of n + 1 nodes. P
=(vO0, v1,Vv2,...,vn)suchthat u=vO0; vi-1is adjacentto vifori=1,2,..., nand vn =v.
Types of Path

1. Simple Path
2. Cycle Path

(1) Simple Path
Simple path is a path in which first and last vertex are different (VO # Vn)

(ii) Cycle Path
Cycle path is a path in which first and last vertex are same (V0 = Vn).It is also called
as Closed path.

Connected Graph
A graph G is said to be connected if there is a path between any two of its nodes.

Complete Graph

A graph G is said to be complete if every node u in G is adjacent to every other node v in G.
Tree

A connected graph T without any cycles is called a tree graph or free tree or, simply, a tree.

Labeled or Weighted Graph

If the weight is assigned to each edge of the graph then it is called as Weighted
or Labeled graph.

The definition of a graph may be generalized by permitting the following:

Il Multiple edges: Distinct edges e and e' are called multiple edges if they connect the same
endpoints, that is, ife = [u, v] and ' = [u, V].
-Loops: An edge e is called a loop if it has identical endpoints, that is, if e = [u, u].

ElFinite Graph:A multigraph M is said to be finite if it has a finite number of nodes and a
finite number of edges.

C D

jntuworldupdates.org Specworld.in

(@) Graph. (b) Multigraph.’



Directed Graphs
A directed graph G, also

a digraph or graph is the same as a multigraph except that each

Indegree of 1 =1

Indegree pf2 =2
Outdegree :The outdegree of a node or vertex is the number of edges for which v is tail.
Example

Outdegree of 1 =1
Outdegree of 2 =2

Simple Directed Graph

A directed graph G is said to be simple if G has no parallel edges. A simple graph G
may have loops, but it cannot have more than one loop at a given node.

Graph Traversal

The breadth first search (BFS) and the depth first search (DFS) are the two algorithms used for
traversing and searching a node in a graph. They can also be used to find out whether a node is
reachable from a given node or not.

Depth First Search (DFS)

The aim of DFS algorithm is to traverse the graph in such a way that it tries to go far from the
root node. Stack is used in the implementation of the depth first search. Let’s see how depth
first search works with respect to the following graph:



As stated before, in DFS, nodes are visited by going through the depth of the tree from the
starting node. If we do the depth first traversal of the above graph and print the visited node, it
will be -A B E F C DIl. DFS visits the root node and then its children nodes until it reaches the
end node, i.e. E and F nodes, then moves up to the parent nodes.

Algorithmic Steps

Step 1: Push the root node in the Stack.
Step 2: Loop until stack is empty.
Step 3: Peek the node of the stack.

Step 4: If the node has unvisited child nodes, get the unvisited child node, mark it
as traversed and push it on stack.

© ®N o

10. Step 5: If the node does not have any unvisited child nodes, pop the node from the
stack.

Based upon the above steps, the following Java code shows the implementation of the
DFS algorithm:

public void dfs()

{
//DFS uses Stack data structure

Stack s=new Stack();
s.push (this.rootNode) ;
rootNode.visited=true;
printNode (rootNode) ;
while (!s.isEmpty())
{
Node n=(Node) s.peek();
Node child=getUnvisitedChildNode (n) ;
if (child!=null)
{
child.visited=true;
printNode (child) ;
s.push (child);

s.pop () ;

}

//Clear visited property
of nodes clearNodes () ;

}



Breadth First Search (BFS)

This is a very different approach for traversing the graph nodes. The aim of BFS algorithm is to
traverse the graph as close as possible to the root node. Queue is used in the implementation of the
breadth first search. Let’s see how BFS traversal works with respect to the following graph:

00!: (D

If we do the breadth first traversal of the above graph and print the visited node as the output, it
will print the following output. -A B C D E FIl. The BFS visits the nodes level by level, so it will
start with level O which is the root node, and then it moves to the next levels which are B, C and
D, then the last levels which are E and F.
Algorithmic Steps

1. Step 1: Push the root node in the Queue.

2. Step 2: Loop until the queue is empty.

3. Step 3: Remove the node from the Queue.

4. Step 4: If the removed node has unvisited child nodes, mark them as visited and

insert the unvisited children in the queue.

Based upon the above steps, the following Java code shows the implementation of
the BFS algorithm:

public void bfs ()

{

//BFS uses Queue data structure

Queue g=new LinkedList();
g.add(this.rootNode) ;
printNode (this.rootNode) ;
rootNode.visited=true;
while (!g.isEmpty())
{
Node n=(Node) g.remove () ;
Node child=null;
while ((child=getUnvisitedChildNode (n)) !=null)
{
child.visited=true;
printNode (child) ;
g.add(child) ;



}

//Clear visited property
of nodes clearNodes () ;

}
Spanning Trees:

In the mathematical field of graph theory, a spanning tree T of a connected, undirected graph G
is a tree composed of all the vertices and some (or perhaps all) of the edges of G. Informally, a
spanning tree of G is a selection of edges of G that form a tree spanning every vertex. That is,
every vertex lies in the tree, but no cycles (or loops) are formed. On the other hand, every bridge
of G must belong to T.

A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that
contains no cycle, or as a minimal set of edges that connect all vertices.

Example:



A spanning tree (blue heavy edges) of a grid graph.
Spanning forests

A spanning forest is a type of subgraph that generalises the concept of a spanning tree.
However, there are two definitions in common use. One is that a spanning forest is a subgraph
that consists of a spanning tree in each connected component of a graph. (Equivalently, it is a
maximal cycle-free subgraph.) This definition is common in computer science and optimisation.
It is also the definition used when discussing minimum spanning forests, the generalization to
disconnected graphs of minimum spanning trees. Another definition, common in graph theory, is
that a spanning forest is any subgraph that is both a forest (contains no cycles) and spanning
(includes every vertex).

Counting spanning trees

The number t(G) of spanning trees of a connected graph is an important invariant. In some cases,
it is easy to calculate t(G) directly. It is also widely used in data structures in different computer

languages. For example, if G is itself a tree, then t(G)=1, while if G is the cycle graph Cp with n

vertices, then t(G)=n. For any graph G, the number t(G) can be calculated using Kirchhoff's
matrix-tree theorem (follow the link for an explicit example using the theorem).

Cayley's formula is a formula for the nurrrl]bgrzof spanning trees in the complete graph K Hvith n
vertices. The formurl]a _stgtes that t(Kp) =n . Another way of stating Cayley's formula is that

there are exactly n labelled trees with n vertices. Cayley's formula can be proved using
Kirchhoff's matrix-tree theorem or via the Priifer code.

g—-1p-—1
If G is the complete bipartite graph Kp,q, then t(G) = p q , While if G is the n-dimensional

H(@) = 221 ] &)
hypercube graph Qp, then k—2
of the matrix-tree theorem.

. These formulae are also consequences

If G is a multigraph and e is an edge of G, then the number t(G) of spanning trees of G satisfies
the deletion-contraction recurrence t(G)=t(G-e)+t(G/e), where G-e is the multigraph obtained by
deleting e and G/e is the contraction of G by e, where multiple edges arising from



this contraction are not deleted.

Uniform spanning trees

A spanning tree chosen randomly from among all the spanning trees with equal probability is
called a uniform spanning tree (UST). This model has been extensively researched in probability
and mathematical physics.

Algorithms

The classic spanning tree algorithm, depth-first search (DFS), is due to Robert Tarjan. Another
important algorithm is based on breadth-first search (BFS).

Planar Graphs:

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be
drawn on the plane in such a way that its edges intersect only at their endpoints.

A planar graph already drawn in the plane without edge intersections is called a plane graph or
planar embedding of the graph. A plane graph can be defined as a planar graph with a
mapping from every node to a point in 2D space, and from every edge to a plane curve, such that
the extreme points of each curve are the points mapped from its end nodes, and all curves are
disjoint except on their extreme points. Plane graphs can be encoded by combinatorial maps.

It is easily seen that a graph that can be drawn on the plane can be drawn on the sphere as well,
and vice versa.

The equivalence class of topologically equivalent drawings on the sphere is called a planar
map. Although a plane graph has an external or unbounded face, none of the faces of a planar
map have a particular status.
Applications

¢ Telecommunications — e.g. spanning trees

¢ Vehicle routing — e.g. planning routes on roads without underpasses

e VLSI - e.qg. laying out circuits on computer chip.

The puzzle game Planarity requires the player to "untangle" a planar graph so that
none of its edges intersect.



Example graphs

planar non planar
- B a / 1" 4
Butterfly graph K5

Graph Theory and Applications:

Graphs are among the most ubiquitous models of both natural and human-made structures. They
can be used to model many types of relations and process dynamics in physical, biological and
social systems. Many problems of practical interest can be represented by graphs.

In computer science, graphs are used to represent networks of communication, data organization,
computational devices, the flow of computation, etc. One practical example: The link structure of
a website could be represented by a directed graph. The vertices are the web pages available at
the website and a directed edge from page A to page B exists if and only if A contains a link to B.
A similar approach can be taken to problems in travel, biology, computer chip design, and many
other fields. The development of algorithms to handle graphs is therefore of major interest in
computer science. There, the transformation of graphs is often formalized and represented by
graph rewrite systems. They are either directly used or properties of the rewrite systems (e.g.
confluence) are studied. Complementary to graph transformation systems focussing on rule-
based in-memory manipulation of graphs are graph databases geared towards transaction-safe,
persistent storing and querying of graph-structured data.

Graph-theoretic methods, in various forms, have proven particularly useful in linguistics, since
natural language often lends itself well to discrete structure. Traditionally, syntax and
compositional semantics follow tree-based structures, whose expressive power lies in the
Principle of Compositionality, modeled in a hierarchical graph. Within lexical semantics,
especially as applied to computers, modeling word meaning is easier when a given word is
understood in terms of related words; semantic networks are therefore important in
computational linguistics. Still other methods in phonology (e.g. Optimality Theory, which uses
lattice graphs) and morphology (e.g. finite-state morphology, using finite-state transducers) are
common in the analysis of language as a graph. Indeed, the usefulness of this area of
mathematics to linguistics has borne organizations such as TextGraphs, as well as various 'Net'
projects, such as WordNet, VerbNet, and others.



Graph theory is also used to study molecules in chemistry and physics. In condensed matter
physics, the three dimensional structure of complicated simulated atomic structures can be
studied quantitatively by gathering statistics on graph-theoretic properties related to the topology
of the atoms. For example, Franzblau's shortest-path (SP) rings. In chemistry a graph makes a
natural model for a molecule, where vertices represent atoms and edges bonds. This approach is
especially used in computer processing of molecular structures, ranging from chemical editors to
database searching. In statistical physics, graphs can represent local connections between
interacting parts of a system, as well as the dynamics of a physical process on such systems.

Graph theory is also widely used in sociology as a way, for example, to measure actors' prestige
or to explore diffusion mechanisms, notably through the use of social network analysis
software.Likewise, graph theory is useful in biology and conservation efforts where a vertex can
represent regions where certain species exist (or habitats) and the edges represent migration
paths, or movement between the regions. This information is important when looking at breeding
patterns or tracking the spread of disease, parasites or how changes to the movement can affect
other species.

In mathematics, graphs are useful in geometry and certain parts of topology, e.g. Knot Theory.
Algebraic graph theory has close links with group theory.

A graph structure can be extended by assigning a weight to each edge of the graph. Graphs with
weights, or weighted graphs, are used to represent structures in which pairwise connections have
some numerical values. For example if a graph represents a road network, the weights could
represent the length of each road.

Basic Concepts Isomorphism:

Let G1 and G1 be two graphs and let f be a function from the vertex set of G1 to the vertex set of
G2. Suppose that f is one-to-one and onto & f(v) is adjacent to f(w) in G2 if and only if v is
adjacent to w in G1.

Then we say that the function f is an isomorphism and that the two graphs G1 and G2 are
isomorphic. So two graphs G1 and G2 are isomorphic if there is a one-to-one correspondence
between vertices of G1 and those of G2 with the property that if two vertices of G1 are adjacent
then so are their images in G2. If two graphs are isomorphic then as far as we are concerned they
are the same graph though the location of the vertices may be different. To show you how the
program can be used to explore isomorphism draw the graph in figure 4 with the program (first
get the null graph on four vertices and then use the right mouse to add edges).
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Save this graph as Graph 1 (you need to click Graph then Save). Now get the circuit graph with 4
vertices. It looks like figure 5, and we shall call it C(4).

Example:

The two graphs shown below are isomorphic, despite their different looking drawings.

Graph G Graph H An isomorphism
between G and H

@ fl@=1

f(b) =6

—& -3
e o f(d)=3

f@=5
f(h)y=2

fi)y=4

f4)=1

Subgraphs:

A subgraph of a graph G is a graph whose vertex set is a subset of that of G, and whose
adjacency relation is a subset of that of G restricted to this subset. In the other direction, a
supergraph of a graph G is a graph of which G is a subgraph. We say a graph G contains
another graph H if some subgraph of G is H or is isomorphic to H.

A subgraph H is a spanning subgraph, or factor, of a graph G if it has the same vertex set as G.
We say H spans G.

A subgraph H of a graph G is said to be induced if, for any pair of vertices x and y of H, xy is an
edge of H if and only if xy is an edge of G. In other words, H is an induced subgraph of G if it
has all the edges that appear in G over the same vertex set. If the vertex set of H is the subset S of
V(G), then H can be written as G[S] and is said to be induced by S.



A graph that does not contain H as an induced subgraph is said to be H-free.

A universal graph in a class K of graphs is a simple graph in which every element in K can be
embedded as a subgraph.

K5, a complete graph. If a subgraph looks like this, the vertices in that subgraph form a
clique of size 5.

Multi graphs:

In mathematics, a multigraph or pseudograph is a graph which is permitted to have multiple
edges, (also called "parallel edges™), that is, edges that have the same end nodes. Thus two
vertices may be connected by more than one edge. Formally, a multigraph G is an ordered pair
G:=(V, E) with

« Vasetof vertices or nodes,
« E amultiset of unordered pairs of vertices, called edges or lines.

Multigraphs might be used to model the possible flight connections offered by an airline. In this
case the multigraph would be a directed graph with pairs of directed parallel edges connecting
cities to show that it is possible to fly both to and from these locations.




A multigraph with multiple edges (red) and a loop (blue). Not all authors allow multigraphs to
have loops.

Euler circuits:

In graph theory, an Eulerian trail is a trail in a graph which visits every edge exactly once.
Similarly, an Eulerian circuit is an Eulerian trail which starts and ends on the same vertex. They
were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg
problem in 1736. Mathematically the problem can be stated like this:

Given the graph on the right, is it possible to construct a path (or a cycle, i.e. a path starting and
ending on the same vertex) which visits each edge exactly once?

Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in
the graph have an even degree, and stated without proof that connected graphs with all vertices
of even degree have an Eulerian circuit. The first complete proof of this latter claim was
published in 1873 by Carl Hierholzer.

The term Eulerian graph has two common meanings in graph theory. One meaning is a graph
with an Eulerian circuit, and the other is a graph with every vertex of even degree. These
definitions coincide for connected graphs.

For the existence of Eulerian trails it is necessary that no more than two vertices have an odd
degree; this means the Konigsberg graph is not Eulerian. If there are no vertices of odd degree,
all Eulerian trails are circuits. If there are exactly two vertices of odd degree, all Eulerian trails
start at one of them and end at the other. Sometimes a graph that has an Eulerian trail but not an
Eulerian circuit is called semi-Eulerian.

An Eulerian trail, Eulerian trail or Euler walk in an undirected graph is a path that uses each
edge exactly once. If such a path exists, the graph is called traversable or semi-eulerian.

An Eulerian cycle, Eulerian circuit or Euler tour in an undirected graph is a cycle that uses
each edge exactly once. If such a cycle exists, the graph is called unicursal. While such graphs
are Eulerian graphs, not every Eulerian graph possesses an Eulerian cycle.

For directed graphs path has to be replaced with directed path and cycle with directed cycle.

The definition and properties of Eulerian trails, cycles and graphs are valid for multigraphs as
well.



This graph is not Eulerian, therefore, a solution does not exist.

Every vertex of this graph has an even degree, therefore this is an Eulerian graph. Following the
edges in alphabetical order gives an Eulerian circuit/cycle.

Hamiltonian graphs:

In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in
an undirected graph which visits each vertex exactly once. A Hamiltonian cycle (or
Hamiltonian circuit) is a cycle in an undirected graph which visits each vertex exactly once and
also returns to the starting vertex. Determining whether such paths and cycles exist in graphs is
the Hamiltonian path problem which is NP-complete.

Hamiltonian paths and cycles are named after William Rowan Hamilton who invented the
Icosian game, now also known as Hamilton's puzzle, which involves finding a Hamiltonian cycle
in the edge graph of the dodecahedron. Hamilton solved this problem using the Icosian Calculus,
an algebraic structure based on roots of unity with many similarities to the quaternions (also
invented by Hamilton). This solution does not generalize to arbitrary graphs.

A Hamiltonian path or traceable path is a path that visits each vertex exactly once. A graph that
contains a Hamiltonian path is called a traceable graph. A graph is Hamilton-connected if for
every pair of vertices there is a Hamiltonian path between the two vertices.



A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each
vertex exactly once (except the vertex which is both the start and end, and so is visited twice).
A graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

Similar notions may be defined for directed graphs, where each edge (arc) of a path or cycle can
only be traced in a single direction (i.e., the vertices are connected with arrows and the edges
traced "tail-to-head").

A Hamiltonian decomposition is an edge decomposition of a graph into Hamiltonian circuits.

Examples
e acomplete graph with more than two vertices is Hamiltonian
e every cycle graph is Hamiltonian

* every tournament has an odd number of Hamiltonian paths
e every platonic solid, considered as a graph, is Hamiltonian

Chromatic Numbers:

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels
traditionally called “colors” to elements of a graph subject to certain constraints. In its simplest
form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the
same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each
edge so that no two adjacent edges share the same color, and a face coloring of a planar graph
assigns a color to each face or region so that no two faces that share a boundary have the same
color.

Vertex coloring is the starting point of the subject, and other coloring problems can be
transformed into a vertex version. For example, an edge coloring of a graph is just a vertex
coloring of its line graph, and a face coloring of a planar graph is just a vertex coloring of its
planar dual. However, non-vertex coloring problems are often stated and studied as is. That is
partly for perspective, and partly because some problems are best studied in non-vertex form, as
for instance is edge coloring.

The convention of using colors originates from coloring the countries of a map, where each face
is literally colored. This was generalized to coloring the faces of a graph embedded in the plane.
By planar duality it became coloring the vertices, and in this form it generalizes to all graphs. In
mathematical and computer representations it is typical to use the first few positive or
nonnegative integers as the "colors". In general one can use any finite set as the "color set". The
nature of the coloring problem depends on the number of colors but not on what they are.

Graph coloring enjoys many practical applications as well as theoretical challenges. Beside the
classical types of problems, different limitations can also be set on the graph, or on the way a



color is assigned, or even on the color itself. It has even reached popularity with the general
public in the form of the popular number puzzle Sudoku. Graph coloring is still a very active
field of research.

v(G)

3 fornodd
2 forneven

Wi n>2 | (3 fornodd
4 forneven
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A proper vertex coloring of the Petersen graph with 3 colors, the minimum number possible.

Vertex coloring

When used without any qualification, a coloring of a graph is almost always a proper vertex
coloring, namely a labelling of the graph’s vertices with colors such that no two vertices sharing
the same edge have the same color. Since a vertex with a loop could never be properly colored, it
is understood that graphs in this context are loopless.

The terminology of using colors for vertex labels goes back to map coloring. Labels like red and
blue are only used when the number of colors is small, and normally it is understood that the
labels are drawn from the integers {1,2,3,...}.

A coloring using at most k colors is called a (proper) k-coloring. The smallest number of colors
needed to color a graph G is called its chromatic number, ¥(G). A graph that can be assigned a
(proper) k-coloring is k-colorable, and it is k-chromatic if its chromatic number is exactly k. A
subset of vertices assigned to the same color is called a color class, every such class forms an
independent set. Thus, a k-coloring is the same as a partition of the vertex set into k independent
sets, and the terms k-partite and k-colorable have the same meaning.
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This graph can be 3-colored in 12 different ways.
The following table gives the chromatic number for familiar classes of graphs.
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